编者按:随着中国科技实力快速进步,十大科技新闻评选越来越难,太多的学科领域和技术门类产出了令人瞩目的成果。一直为您实况转播中国科技马拉松大赛的我们,在评选2015年重头新闻的时候,不得不忍痛割爱,舍弃一些有战略意义的技术进展、精彩的科学原创成果和抓人眼球的科学传播事件。不过我们相信,最终入榜的,虽未涵盖过去一年所有的科技大事,却能让读者窥一斑而知全豹。
防护等级最高的
传染病实验室建成
小城突发怪病,一群白大褂采集了样本,送入层层间隔的实验室,在密闭实验舱里隔着塑胶长手套操作……电影里经常会讲到P4实验室。它是专用于烈性传染病研究的大型装置,是人类迄今为止建造的生物安全防护等级最高的实验室。
中国科学院武汉国家生物安全实验室2015年1月31日竣工。至此我国终于有了国际先进的P4实验室,可以研究类似埃博拉病毒具有烈性传染的病原体了。
进入P4的核心实验区之前,每进一道门都面临更低的气压,保证P4实验室的空气只能从外往里走。10道门里,有7道保证不会同时打开。还有一系列设计,比如堪比宇航服的密封工服、带消毒设备的传递口以及监控全记录与几层电子门禁,让P4实验室成为地球上最戒备森严、难以接近的角落。
武汉P4实验室建成之前,全球仅主要发达国家拥有这类装置,其中新一代版本的法国里昂实验室是最为先进的。SARS爆发后,我国政府战略性地启动了P4实验室的建设,在引进里昂P4实验室技术和装备的基础上,充分发挥中国工程科技人员的智慧,终于建成世界上最先进的P4实验室。
中科大首次成功实现
“单光子多自由度量子隐形传态”
科幻电影《星际迷航》里,一位船员站上机器平台,他的身影模糊起来,然后突然消散。瞬间,丝毫无差别的一个人,出现在另一座星球上的传送台上——这个想象中的技术被取名叫“Teleportation(瞬间移动)”。
2015年2月26日,《自然》杂志封面发表了潘建伟、陆朝阳等人的《单个光子的多个自由度的量子隐形传态》论文,让眼尖的科幻取向的读者们挑出来,大为赞叹。因为它完成的就是某种意义上的“瞬间移动”。
1997年,采用间接的“量子纠缠”技术,一个光子的偏振状态被瞬间转移到远方。但是,不能说光子被传送走了。因为动量、波长等其他信息没有传走,就好像光传人的身高信息不行,还得传送体重、年龄等等。
中国科学家发展了“非摧毁性的测量技术”,首次让一个光子的“自旋”和“轨道角动量”两项信息能同时传送。
《自然》同期配发评论称:“该实验为理解和展示量子物理的一个最深远和最令人费解的预言迈出了重要的一步,并可以作为未来量子网络的一个强大的基本单元。”审稿专家认为实验“绝对新颖、重要,处于量子光学和量子信息领域的最前沿,可认为是一大成就”。
新政策力挺“大众创业、
万众创新”和科技体制改革
2015年的政府工作报告明确提出,打造大众创业、万众创新和增加公共产品、公共服务成为实现中国经济提质增效升级“双引擎”。当前,全社会的创业创新热情不断高涨,创业创新氛围日益浓厚。
3月,国务院印发《关于发展众创空间推进大众创新创业的指导意见》,部署推进大众创业和万众创新,“加快发展众创空间等新型创业服务平台,营造良好的创新创业生态环境”。同样在3月发布的《关于深化体制机制改革加快实施创新驱动发展战略的若干意见》则提出,到2020年,基本形成适应创新驱动发展要求的制度环境和政策法律体系,为进入创新型国家行列提供有力保障。
与此同时,科技界普遍关心的科技体制改革也传出新消息。9月,《深化科技体制改革实施方案》出台,该方案包括企业技术创新、科研机构改革、人才培养激励等多项改革举措。该实施方案提出,到2020年,力争我国在科技体制改革的重要领域和关键环节上取得突破性成果,并基本建立适应创新驱动发展战略要求、符合社会主义市场经济规律和科技创新发展规律的中国特色国家创新体系。
发现外尔费米子
近百年前的一个预言被证实了。2015年7月,中国科学院物理研究所发布消息:他们发现了具有“手性”的电子态——外尔费米子。物理所表示,中国科学家的这一发现,从材料理论预言到实验观测都是独立完成。
基本粒子虽然小,但像地球一样是可以自转的,而且可以正转也可以反转。1929年,德国科学家外尔推测,无“质量”(线性色散)的电子,可以分为左旋和右旋两种不同“手性”,或者说存在“外尔费米子”。但是86年来实验从未观测到。
中科院物理所的科学家年初找到了钽砷晶体(TaAs)等四种非磁性的外尔半金属材料,是取得进展的关键。
中国人的发现2014年12月31日提交电子预印本网站(Arxiv)后,中科院物理所、北京大学、美国普林斯顿大学等团队都试图在TaAs中找到外尔费米子。这是一场激烈竞争。普林斯顿大学团队和中科院物理所团队几乎同时宣布成功。
“不是通过加速器,而是简单地在晶体里发现了新的粒子现象。这或许对其他实验有启发:凝聚态物理里,通过一些低能激发,可能产生高能物理范围的粒子行为。”物理所研究员翁红明说,他们还将试着寻找“拓扑超导”等新物理现象。
如今在科学前沿领域,中国人的原创成就是越来越多了。可以预计,今后在前沿科学的跑道上,中外科学家还将一次次为率先撞线而拼搏。
中国学者论文遭国际期刊大量撤回
对于国内某些学者,2015年似乎是多事之秋,他们发表在一些国际期刊的文章被撤下了。3月,英国BMC出版社撤回43篇论文,其中41篇来自中国;8月,德国施普林格出版集团撤回旗下64篇论文,绝大部分来自中国;10月,爱思唯尔撤销旗下9篇论文,全部来自中国。
施普林格出版集团在声明中说,该集团的期刊编辑最先发现一些论文的评议人电子邮件地址的真实性存在问题,随后展开的内部调查发现了大量伪造的同行评议报告。所谓同行评议是学术刊物普遍采用的一种论文评审制度,一般由刊物编辑邀请论文所涉领域的学者进行评议。一直以来,许多出版社都允许论文作者在递交相关材料的过程中向期刊编辑推荐同行评议的人选,但这一次就被钻了空子。
构建诚信土壤是学术生存的根本,因此打击学术不端行为非常有必要,而且力度应该进一步加大,2015年的国际期刊撤回论文系列事件,给一些心存侥幸的投机者以警醒。
论文发表至上,造成发表论文和拿下课题成为一些学人的终极目标,由此而来的弊端,各国均受其害,中国学术界也不例外。有些论文是通过单位行政部门硬性规定,批量生产出来的。这些硬挤出来的成果,不少是缺乏学术价值的垃圾论文,还有一些涉嫌学术不端。应对这一弊端,既需要改革科研评价制度,也要弘扬科学道德,从管理和思想两方面厘清学界风气。
获得高分辨率的
剪接体三维结构图
2015年8月,《科学》杂志发表了清华大学生命科学学院施一公研究组的两篇论文,《3.6埃的酵母剪接体结构》和《前体信使RNA剪接的结构基础》。研究组用冷冻电镜获得了分辨率高达3.6埃米的剪接体三维结构,并在此基础上,阐述了剪接体是如何剪接的。
DNA要表达成生命活动,就离不开剪接体。剪接体由核糖核酸和蛋白分子组成,可以把已具雏形的信使RNA(DNA和蛋白质之间的传话人)剪掉一些片段,再加上一些片段,变成合格的信使。
一直以来,解析剪接体三维结构被认为是分子生物学里的热门研究。因为许多疾病源于基因的错误剪接或针对剪接体的调控错误。在真核生物中,基因表达由RNA聚合酶、剪接体和核糖体合力工作。而剪接体作为生命中的一大工具,其结构解析的难度被普遍认为高于RNA聚合酶和核糖体。
施一公团队成功的前提,是使用了裂殖酵母为实验对象,并且拥有世界最大的冷冻电镜。他们的研究成果,使人们第一次在近原子分辨率上看到了剪接体的细节——剪接体的外形轮廓十分不对称,各个蛋白相互缠绕,形成了分子量和体积巨大的复合物。这是自1993年RNA(核糖核酸)剪接发现以来,科学家率先对剪接体近原子分辨率结构进行解析,对人类进一步揭示与剪接体相关疾病的机理,提供了结构基础和理论。
中国锶光钟1.38亿年不差一秒
一秒到底有多长?好像能说清,但永远不能完全说清。报时的机器有多精确,时间的定义就有多精确。中国计量科学研究院研制的锶87原子光晶格钟(以下简称锶光钟)数据首次被国际频率标准工作组采纳,为我国未来在重新定义秒的国际问题上争得了话语权。2015年7月,中国科学家顺利完成了锶光钟的第一次系统频移评定和绝对频率测量工作,准确度相当于1.38亿年不差一秒。
锶光钟是目前世界上频率稳定度最高的原子钟,也是研究最多的冷原子光晶格钟,高出现行秒定义所采用的铯原子喷泉钟2个数量级,被认为是新一代秒定义最有潜力的候选者。它使用好几个不同波长激光光源,从而使频率一致化,结构十分复杂。
中国计量院锶原子光晶格钟研究工作始于2007年。目前,包括中国计量院在内,已有美国科罗拉多大学与美国标准与技术研究院联合实验室、日本东京大学、法国巴黎天文台时间频率标准实验室等8家单位的锶光钟数据被国际频率标准工作组采纳。
国际频率标准工作组9月在法国决定,于2025~2028年间完成新一代秒的定义。如果使用光钟的新技术来重新定义秒,将对全球卫星定位导航系统、人类探索宇宙和研究物理学规律等领域产生极为深远的影响。
中国女科学家屠呦呦
获诺贝尔生理学或医学奖
中国大陆科学家拿诺贝尔奖还要多久?2015年10月5日,随着瑞典卡罗琳斯卡医学院宣布屠呦呦荣获2015年诺贝尔生理学或医学奖,几十年以来,这般萦绕在国人耳边无数次的诘问就此终结。
作为第一位获诺贝尔科学奖项的中国本土科学家,84岁的中国女药学家屠呦呦长期从事中药和中西药结合研究。在获奖致辞中,屠呦呦感言青蒿素是传统中医药献给世界的礼物。疟疾是一种因蚊叮咬而感染疟原虫所引起的虫媒传染病。在历史上,疟疾是最为流行且凶险的传染病之一。屠呦呦从我国传统医学典籍中获得灵感,从野草中提取出抗击疟疾的良药。青蒿素现在已在全球拯救了数以百万的生命。屠呦呦与她所在科研团队发现的青蒿素必将载入科技发展历程的光辉史册。
“中医究竟是不是科学”常成为论战题目。屠呦呦因其发现的青蒿素对治疗疟疾具有强大作用而获奖,不仅展示了中国在医学方面的斐然成就,让世界重新认识到传统中医药的巨大价值,也顺带引起了网上新一轮热议和论战。
中国自研大型客机C919首架下线
2015年11月2日,我国自主研制的C919大型客机(COMAC C919)首架机正式下线。C919能成为“网红”并非单纯是“主要看气质”。作为中国首款按照最新国际适航标准研制的干线民用飞机,C919基本型混合级布局158座、全经济舱布局168座、高密度布局174座,标准航程4075公里,增大航程5555公里。针对先进的气动布局、结构材料和机载系统,C919的研制人员共规划了102项关键技术攻关。C919大型客机是建设创新型国家的标志性工程,拥有自主知识产权。
C919正式下线标志着C919大型客机项目工程发展阶段研制取得了阶段性成果,为下一步首飞奠定了坚实基础。作为《国家中长期科学与技术发展规划纲要(2006~2020)》确定的16个重大专项之一,大型飞机体现了我国建设创新型国家,提高自主创新能力和增强国家核心竞争力的重大战略决策。
回顾中国大飞机研制过程,从不计成本、以造军用飞机的方式做出运-10的“任性”,到尊重市场规律生产出“颜值高”的C919。这些年里,我国飞机产业发展面临着国际社会和市场环境的风云变幻,然而,包括C919研制人员在内的广大航天航空人发展产业的报国愿景却一如当初。
暗物质卫星“悟空”上天
暗物质是宇宙最大谜题之一。我们从超额的引力推测它们存在,但是无法证实它们是什么东西。现在,一个小个子中国卫星要加入搜寻暗物质的工作了。
搭载着暗物质粒子探测卫星的长征二号丁运载火箭,2015年12月在酒泉卫星发射中心升空,顺利入轨。24日,卫星成功获取首批科学数据,并下传至中科院国家空间科学中心空间科学任务大厅。未来它会巡天观测两年,然后定向观测两年。
名为“悟空”的暗物质粒子探测卫星,是中科院空间科学战略性先导科技专项中首批立项研制的4颗科学实验卫星之一,是目前世界上观测能段范围最宽、能量分辨率最优的暗物质粒子探测卫星,超过所有同类探测器。卫星上装载的暗物质粒子探测器,将在太空中开展高能电子及高能伽马射线探测任务,探寻暗物质存在的证据。它还将帮助科学家研究宇宙射线起源。
暗物质粒子探测卫星工作轨道为高约500千米的晨昏太阳同步轨道,每天平均观测500万个高能粒子,每天回传的数据量约16G,相当于一部高清电影的数据量。卫星根据任务需求,采用BGO量能器结合硅阵列探测器和塑闪阵列探测器,完成高能粒子能量、方向、电荷的测量,并以中子探测器提高电子与质子鉴别率。
暗物质粒子探测卫星是我国第一颗由中科院完全研制、生产的卫星,中科院国家空间科学中心负责卫星工程的总体工作。