欢迎来到专业的唐家秘书网平台! 工作总结 工作计划 心得体会 思想汇报 发言稿 申请书 述职报告 自查报告
当前位置:首页 > 专题范文 > 公文范文 > 正文

球形储罐罐底附加黏弹性阻尼器减震研究

时间:2022-10-21 14:25:07 来源:网友投稿

zoޛ)j馝uoiMM
tӎ9}9ӿ=O3Mz+,]4vm5Nt_m4jw[Գ,NNk6j*r�)ڙm]Ζ^{'k^fm5'L!zhz6m5m4뽴O6]BzYb]5iV材料制成(阻尼材料的力学取自依据文献[12]), 中间层钢板通过上支承与球罐底部相连,上下两层钢板连接为一个整体通过下支承与地面固接。圆盘周边开槽放置钢制滚珠,主要目的是为了控制中间钢板在竖直方向的位移,避免对阻尼材料产生拉压变形,确保阻尼层只受水平剪切;下支承部分,连接阻尼器中上部及下部钢板,使上下两块钢板形成整体固定于地面,本文采用钢筋混凝土支柱。

2 理论分析

2.1 黏弹性阻尼器力学模型 国内外学者对黏弹性阻尼器恢复力模型研究得比较多[13],目前主要有Maxwell模型、Kelvin模型、等效标准固化模型、等效刚度阻尼模型等。等效刚度阻尼模型是由Chang K C等[14]提出,其理论及计算简单,工程应用比较广泛,由此本文黏弹性阻尼器恢复力模型采用等效刚度阻尼模型。

根据规范[14]可算得球形储罐支承系统刚度k0=6.86×107 N/m,取φ=0.4,可得λ≥0.67取为0.67,则据式(29)可得kd=k0=4.60×107 N/m,进而可算得阻尼材料面积A=(0.493×2) m2, 则圆盘平板式阻尼器半径为0.40 m。上、下支承刚度分别为:ks1=6.19×109 N/m,ks2=9.1×108 N/m。支承结构阻尼系数可根据Rayleigh阻尼模型得出。选择Ⅳ类场地中满足规范[14]的5条天然波和2条人工波,调整加速度时程曲线峰值为0.2g,加速度反应谱如图6所示,采用Newmark-β进行时程分析,计算结果如表3所示。图7为天津波地震动输入时地震动响应时程曲线。其中算例的自振周期为0.488 s。

从表3中数据可知,罐底附加黏弹性阻尼器初始简化力学模型与二次简化力学模型计算结果十分接近,最大差异率为6.83%,且初始简化力学模型计算值均大于二次简化后计算值,因此从结构安全角度考虑,若采用二次简化力学模型进行减震设计时,其计算结果应适当放大。从数据上看,在球罐底部附加黏弹性阻尼器后总的基底剪力、倾覆弯矩及晃动波高均有明显降低,减震率在50%左右,而对于球罐支柱来说考虑减震措施后其底部剪力减震率更是达到70%以上,能有效防止拉杆断裂、地脚螺栓破坏等震害。同时从数据上也可以看出,球罐支柱承担的基底剪力占总剪力的55%左右,则黏弹性阻尼系统承担了总剪力的45%,达到了设计目标的40%。

3 有限元数值仿真分析〖*2〗3.1 算例分析 依据上述工程实例,利用大型有限元软件ADINA建立球形储罐抗震及罐底附加黏弹性阻尼器减震有限元数值仿真模型,其中球壳选用Shell单元,共1550个单元,球罐支柱及阻尼系统上支承选用Pipe单元,分别建立了160个单元及10个单元,拉杆选用Truss单元,储液选用势流体单元,共15000个单元,阻尼系统下支柱采用Beam单元,共建50个单元,黏弹性阻尼器选用Spring单元模拟。有限元模型如图8所示。

以加速度峰值为0.2g 的TH1TG065作为地震动输入进行地震动响应分析,计算结果如图9所示。

从图9可知,在球罐底部附加黏弹性阻尼器后各工况值均大幅降低。球罐支柱基底剪力峰值及左边单柱竖向反力峰值由抗震时的1993.3和1092.4 kN,减小到603.9和726.9 kN,减震率分别为69.70%,33.46%,说明采用减震措施后能有效防止地脚螺栓的破坏。倾覆弯矩峰值由15410.4 kN·m降低为7703.9 kN·m,减震率为50.01%,降低了球罐在地震作用时的倾覆倾倒风险。拉杆有效应力峰值由275.4 MPa减少为83.4 MPa,远低于拉杆屈服应力490 MPa。图9(e)中柱顶位移由0.046 m减小为0.012 m,球罐支承体系层间位移角由1/174降低为1/667,支柱内力大副降低,说明采用阻尼器后能有效防止变形过大造成支柱弯曲破坏。图9(f)中晃动波高峰值由抗震时的0.84 m减小到0.53 m,说明在罐底附加黏弹性阻尼器后能在一定程度控制储液的晃动。

3.2 数值解与有限元解对比分析

以上述7条Ⅳ类场地地震波作为地震动输入,考虑均值效应后将有限元模型计算得出的基底剪力、倾覆弯矩及晃动波高分别与数值解对比,计算结果如表4所示。

从表4中数据可以看出,对抗震结构来说各工况数值解均比有限元解大,最大差異率为基底剪力的8.78%。而考虑黏弹性阻尼减震措施后理论分析计算结果较有限元值偏小,最大差异率为晃动波高的-8.54%。因此当采用简化力学模型进行减震设计时,其计算结果可适当放大,从结构安全性考虑放大系数可取1.1~1.2。总的来说数值解与有限元解十分接近,相互验证了计算结果的准确性。

4 结 论

(1)考虑球罐储液晃动效应,推导了球形储罐抗震简化力学模型、罐底附加黏弹性阻尼器的初始简化力学模型及二次简化力学模型,并进行了地震动响应分析,得出采用减震措施后能大幅削减球罐支承的受力,对储液晃动波高亦有一定控制作用;

(2)有限元模型计算结果表明,在罐底附加黏弹性阻尼器后能有效防止地震作用下地脚螺丝破坏、拉杆拉断、球罐倾覆、支柱弯曲破坏等震害;

(3)将有限元计算结果与数值解进行对比分析,数值解与有限元解十分接近,相互验证了计算结果的准确性,当采用简化力学模型进行减震设计时,初始简化模型及二次简化模型计算结果应适当放大,从结构安全性考虑放大系数可取1.1~1.2。

参考文献:

[1] Ramaneyulu K, Husain A, Sehgal D K, et al. Finite element analysis and reliability assessment of spherical LPG storage tank[J]. IE (I) Journal-MC, 2003,84(3):98—103.

[2] Lazaros A Patkas, Manolis A Platyrrachos. Sloshing effects on the seismic design of horizontal-cylindrical and spherical industrial vessels[J]. Journal of Pressure Vessel Technology, 2006,128:328—340.

[3] Lazaros A Patkas, Manolis A Platyrrachos. Variational solutions for externally induced sloshing in horizontal-cylindrical and spherical vessels[J]. Journal of Engineering Mechanics,2007,133(6):641—655.

[4] Oludele Adeyefa,Oluleke Oluwole. Finite element modeling of seismic response of field fabricated liquefied natural gas (LNG)[J]. Engineering, 2013,5(6):543—550.

[5] Seyyed M Hasheminejad, Ali Moshrefzadeh, Miad Jarrahi. Transient sloshing in partially filled laterally excited spherical vessels[J]. Journal of Engineering Mechanics, 2013,139(7):802—813.

[6] 郭龙玮,张大勇,杨智荣,等.球形储罐的抗震性能分析研究[J]. 压力容器,2014,31(7):49—54.

Guo Long-wei,Zhang Da-yong, Yang Zhi-rong, et al. Analysis and research on seismic performance of spherical tank[J]. Pressure Vessel Technology, 2014,31(7):49—54.

[7] 肖志刚. 球形储液罐地震反应分析及减振方法研究[D].哈尔滨:哈尔滨工业大学,2006.

Xiao Zhi-gang. Analysis of seismic response and vibration dissipated method of spherical liquid-storage tank[D]. Harbin: Harbin Institute of Technology, 2006.

[8] 戴鸿哲,王 伟,肖志刚. 球形储液罐液-固耦联地震反应及减振方法[J].哈尔滨工业大学学报,2010,42(4):515—520.

Dai Hong-zhe,Wang Wei,Xiao Zhi-gang. Fluid-structure interactive seismic response and vibration dissipation method of spherical liquid-storage tank[J]. Journal of Harbin Institute of Technology, 2010,42(4):515—520.

[9] Curadelli O. Seismic reliability of spherical containers retrofitted by means of energy dissipation devices[J]. Engineering Structures, 2011, 33(9): 2662—2667.

[10] 宮成欣. 球形储罐地震反应及结构控制研究[D].大庆:大庆石油学院,2007.

Gong Cheng-xin. Research on the earthquake response and structure control of the spherical storage tanks[D].Daqing: Daqing Petroleum Institute, 2007.

[11] 宫成欣. 油气田中球形储罐地震反应及结构控制[J]. 油气田地面工程,2015,34(3):55—56.

Gong Cheng-xin. Seismic response and structure control of spherical tanks in oil and gas fields[J]. Oil and Gas Field Surface Engineering, 2015,34(3):55—56.

[12] 周 颖,李 锐,吕西林. 黏弹性阻尼器性能试验研究及参数识别[J]. 结构工程师,2013,29(1): 83—91.

ZHOU Ying, LI Rui, L Xilin. Experimental study and parameter identification of viscoelastic dampers[J]. Structural Engineers, 2013, 29(1): 83—91.

[13] 周 云. 黏弹性阻尼器减震结构设计[M]. 武汉:武汉理工大学出版社,2006.

Zhou Yun. Design of Viscoelastic Damper Structure[M]. Wuhan: Wuhan University of Technology Press, 2006.

[14] Chang K C, Lai M L, Soong T T, et al. Seismic behavior and design guideline for steel frame structures with added viscoelastic damper[R]. NCEER 93-0009, National Center for Earthquake Engineering Research. Buffalo, NY, 1993.

[15] GB 50191-2012. 构筑物抗震设计规范[S]. 北京: 中国计划出版社,2012.

GB 50191-2012. Design code for antiseismic of special structures[S]. Beijing: China Planning Press, 2012.

[16] 赵忠奎,崔学慧,郝华宇.数学物理方程[M].北京:石油工业出版社,2013.

Zhao Zhong-kui, Cui Xue-hui, Hao Hua-yu. Mathematical Physical Equation[M]. Beijing: Petroleum Industry Press,2013.

[17] GB 50011-2010. 建筑抗震设计规范 [S]. 北京: 中国建筑工业出版社,2016.

GB 50011-2010. Code for seismic design of buildings[S]. Beijing:China Architecture & Building Press, 2016.

Abstract: In order to study the damping effect of viscoelastic damper attached to the bottom of a spherical tank, the seismic simplified mechanical model considering the sloshing effect, the initial and further simplified mechanical model with viscoelastic dampers at the bottom of the tank are deduced respectively, and the corresponding seismic response analyses were carried out. The results show that the viscoelastic dampers can greatly reduce the force of the support of the spherical tank and the sloshing wave height of the reservoir. Moreover, the calculation results of the finite element model show that the additional viscoelastic dampers at the bottom of the tank can effectively reduce the seismic response. By comparison, the finite element calculation results and the numerical solutions are very close to each other, verifying the accuracy of the calculation results. When the simplified mechanical model is applied to seismic design, the results of the initial simplified model and the further simplified model should be properly amplified. For the purpose of structural safety, the amplification factor could be considered to be 1.1~1.2.

Key words: antiseismic; spherical tank; viscoelastic dampers; ground motion response; simplified mechanics model

作者簡介: 吕 远(1990—),男,博士研究生。电话: 13704266093; E-mail: m13704266093@163.com

推荐访问:球形 减震 弹性 附加 储罐