一元二次方程教学设计1 教学目标 掌握b2—4ac>0,ax2+bx+c=0(a≠0)有两个不等的实根,反之也成立;b2—4ac=0,ax2+bx+c=0(a≠0)有两个相等的实数根,反之也成立下面是小编为大家整理的2023年度一元二次方程教学设计五篇【优秀范文】,供大家参考。
一元二次方程教学设计1
教学目标
掌握b2—4ac>0,ax2+bx+c=0(a≠0)有两个不等的实根,反之也成立;b2—4ac=0,ax2+bx+c=0(a≠0)有两个相等的实数根,反之也成立;b2—4ac<0,ax2+bx+c=0(a≠0)没实根,反之也成立;及其它们关系的运用。
通过复习用配方法解一元二次方程的b2—4ac>0、b2—4ac=0、b2—4ac<0各一题,分析它们根的情况,从具体到一般,给出三个结论并应用它们解决一些具体题目。
重难点关键
1、重点:b2—4ac>0 一元二次方程有两个不相等的实根;b2—4ac=0 一元二次方程有两个相等的实数;b2—4ac<0 一元二次方程没有实根。
2、难点与关键
从具体题目来推出一元二次方程ax2+bx+c=0(a≠0)的b2—4ac的情况与根的情况的关系。
教具、学具准备
小黑板
教学过程
一、复习引入
(学生活动)用公式法解下列方程。
(1)2x2—3x=0 (2)3x2—2 x+1=0 (3)4x2+x+1=0
老师点评,(三位同学到黑板上作)老师只要点评(1)b2—4ac=9>0,有两个不相等的实根;(2)b2—4ac=12—12=0,有两个相等的实根;(3)b2—4ac=│—4×4×1│=<0,方程没有实根。
二、探索新知
方程b2—4ac的值b2—4ac的符号x1、x2的关系
(填相等、不等或不存在)
2x2—3x=0
3x2—2 x+1=0
4x2+x+1=0
请观察上表,结合b2—4ac的符号,归纳出一元二次方程的根的情况。证明你的猜想。
从前面的具体问题,我们已经知道b2—4ac>0(<0,=0)与根的情况,现在我们从求根公式的角度来分析:
求根公式:x= ,当b2—4ac>0时,根据*方根的意义, 等于一个具体数,所以一元一次方程的x1= ≠x1= ,即有两个不相等的实根。当b2—4ac=0时,根据*方根的意义 =0,所以x1=x2= ,即有两个相等的实根;当b2—4ac<0时,根据*方根的意义,负数没有*方根,所以没有实数解。
因此,(结论)(1)当b2—4ac>0时,一元二次方程ax2+bx+c=0(a≠0)有两个不相等实数根即x1= ,x2= 。
(2)当b—4ac=0时,一元二次方程ax2+bx+c=0(a≠0)有两个相等实数根即x1=x2= 。
(3)当b2—4ac<0时,一元二次方程ax2+bx+c=0(a≠0)没有实数根。
例1、不解方程,判定方程根的情况
(1)16x2+8x=—3 (2)9x2+6x+1=0
(3)2x2—9x+8=0 (4)x2—7x—18=0
分析:不解方程,判定根的情况,只需用b2—4ac的值大于0、小于0、等于0的情况进行分析即可。
解:(1)化为16x2+8x+3=0
这里a=16,b=8,c=3,b2—4ac=64—4×16×3=—128<0
所以,方程没有实数根。
三、巩固练习
不解方程判定下列方程根的情况:
(1)x2+10x+26=0 (2)x2—x— =0 (3)3x2+6x—5=0 (4)4x2—x+ =0
(5)x2— x— =0 (6)4x2—6x=0 (7)x(2x—4)=5—8x
四、应用拓展
例2、若关于x的一元二次方程(a—2)x2—2ax+a+1=0没有实数解,求ax+3>0的解集(用含a的式子表示)。
分析:要求ax+3>0的解集,就是求ax>—3的解集,那么就转化为要判定a的值是正、负或0。因为一元二次方程(a—2)x2—2ax+a+1=0没有实数根,即(—2a)2—4(a—2)(a+1)<0就可求出a的取值范围。
解:∵关于x的一元二次方程(a—2)x2—2ax+a+1=0没有实数根。
∴(—2a)2—4(a—2)(a+1)=4a2—4a2+4a+8<0
a<—2
∵ax+3>0即ax&
gt;—3
∴x<—
∴所求不等式的解集为x<—
五、归纳小结
本节课应掌握:
b2—4ac>0 一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实根;b2—4ac=0 一元二次方程ax2+bx+c=0(a≠0)有两个相等的实根;b2—4ac<0 一元二次方程ax2+bx+c=0(a≠0)没有实数根及其它的运用。
六、布置作业
1、教材P46 复习巩固6 综合运用9 拓广探索1、2。
2、选用课时作业设计。
第7课时作业设计
一、选择题
1、以下是方程3x2—2x=—1的解的情况,其中正确的有( )。
A、∵b2—4ac=—8,∴方程有解
B、∵b2—4ac=—8,∴方程无解
C、∵b2—4ac=8,∴方程有解
D、∵b2—4ac=8,∴方程无解
2、一元二次方程x2—ax+1=0的两实数根相等,则a的值为( )。
A、a=0 B、a=2或a=—2
C、a=2 D、a=2或a=0
3、已知k≠1,一元二次方程(k—1)x2+kx+1=0有根,则k的取值范围是( )。
A、k≠2 B、k>2 C、k<2且k≠1 D、k为一切实数
二、填空题
1、已知方程x2+px+q=0有两个相等的实数,则p与q的关系是________。
2、不解方程,判定2x2—3=4x的根的情况是______(填"二个不等实根"或"二个相等实根或没有实根")。
3、已知b≠0,不解方程,试判定关于x的一元二次方程x2—(2a+b)x+(a+ab—2b2)=0的根的情况是________。
三、综合提高题
1、不解方程,试判定下列方程根的情况。
(1)2+5x=3x2 (2)x2—(1+2 )x+ +4=0
2、当c<0时,判别方程x2+bx+c=0的根的情况。
3、不解方程,判别关于x的方程x2—2kx+(2k—1)=0的根的情况。
4、某集团公司为适应市场竞争,赶超世界先进水*,每年将销售总额的8%作为新产品开发研究资金,该集团2000年投入新产品开发研究资金为4000万元,2002年销售总额为7。2亿元,求该集团2000年到2002年的年销售总额的*均增长率。
一元二次方程教学设计2
【教学目标】
1、会根据具体问题中的数量关系列一元二次方程并求解。
2、能根据问题的实际意义,检验所得结果是否合理。
3、进一步掌握列方程解应用题的步骤和关键。
【教学过程】
一、复习回顾:
1、解一元二次方程都有哪些方法?(学生口答)
2、列一元一次方程解应用题有哪些步骤?(学生口答)
①审题;②设未知数;③找相等关系;④列方程;⑤解方程;⑥答
二、问题探究:
(一)思考课本探究1回答下列问题:
(1)设每轮传染中*均一个人传染x个人,那么患流感的这个人在第一轮传染中传染了 人;第一轮传染后,共有 人患了流感。
(2)在第二轮传染中,传染源是 人,这些人中每一个人又传染了 人,那么第二轮传染了 人,第二轮传染后,共有 人患流感。
(3)根据等量关系列方程并求解。为什么要舍去一解?
(4)通过对这个问题的探究,你对类似的传播问题中的数量关系有新的认识吗?
(5)完成教材思考:如果按照这样的传播速度,三轮传染后,有多少人患流感?
(学生在交流中解决问题,教师深入小组讨论,对疑惑较多的问题要点拨;前两个问是解题的关键,可作适当点拨。最后思考题,可让学生试试独立完成。教给学生如何审题,分析题。)
三、例题学习:
例1:青山村种的水稻2001年*均每公顷产7200kg,2003年*均每公顷产8450kg,求水稻每公顷产量的年*均增长率。 (学生独立思考、练习。一学生板书,教师巡视后讲解)
例2:(教材探究2)两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年*均下降率较大?
(给学生分组求解,然后比较哪个小组做的有快又准。最后比较哪种药品成本*均下降率较大。)
四、课堂练习:(学生独立思考、练习。一学生板书,教师巡视后讲解)
1、某种植物的主干长出若干数目的枝干,每个枝干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出多少小分支?
2、有一人患了流感,经过两轮传染后共有121人患了流感,毎轮传染中*均一个人传染了几个人?
五、总结反思:(由学生自己完成,教师作适当补充)
1、列一元二次方程解应用题的步骤:审、设、找、列、解、答。最后要检验根是否符合实际意义。
2、探究2是*均增长率或降低率问题。若*均增长(降低)率为x,增长(或降低)前的基数是a,增长(或降低)n次后的量是b,则有: (常见n=2)
教后记:
本节课是一元二次方程的应用第一课时。通过本节课的教学,总体感觉调动了学生的积极性,能够充分发挥学生的主体作用,以现实生活情境问题入手,激发了学生思维的火花,具体我以为有以下几个特点:
一、通过学生口答,复习了列方程解应用题的一般步骤及解一元二次方程的方法,为学习本节知识打好了基础。
二、问题探究通过问题串让学生解决的问题由浅入深,由易到难,也让学生解决问题的能力逐级上升,这样学生感到成功机会增加,从而有一种积极的学习态度,同时学生在学习中相互交流、相互学习,共同提高。
三、本节课第一个例题,是增长率问题中的.一个典型例题,我在引导学生解决此题之后,进一步总结了列方程解应用题的步骤。不仅关注结果更关注过程,让学生养成良好的解题习惯。
四、在课堂中始终贯彻数学源于生活又用于生活的数学观念,同时用方程来解决问题,使学生树立一种数学建模的思想。
五、课堂上多给学生展示的机会,让学生走上讲台,向同学们展示自己的聪明才智。同时在这个过程中,更有利于发现学生分析问题与解决问题独到见解及思维误区,以便指导今后教学。总之,通过各种启发、激励的教学手段,帮助学生形成积极主动求知态度,课堂收效大。
六、需改进的方面:
1、由于怕完不成任务,给学生独立思考时间安排有些不合理,这样容易让思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。例如例2有多种解法,课后一些学生与老师交流,但课上没有得到充分的展示、
2、只考虑扑捉学生的思维亮点,一学生列错了方程,我没有给予及时纠正。导致使一些同学陷入误区、
3、下课后很多学生和我沟通课上一学生的错误问题,但他们上课并不敢提出,有点却场,所以*时要培养学生敢想敢说敢于发表个人的不同见解的学风。
一元二次方程教学设计3
一、学生知识状况分析
学生已经学习了一元二次方程及其解法,对于方程的解及解方程并不陌生,实际问题的应用,有些抽象,虽然学生在七、八年级已经进行了有关的训练,但还是有一定的难度。
本节内容针对的学生是才进入九年级的学生,他们已经具备了一定的抽象思维和建模能力,也具备一定的生活经验和初步的解一元二次方程的经验。
二、教学任务分析
本节课的主要是发展学生抽象思维,强化学生的应用意识,使学生能通过抽象思维将一个应用题抽象成一元二次方程使问题得以解决,这也是方程教学的重要任务。但学生抽象意识和能力的发展不是自发的,需要通过大量的应用实例,在实际问题的解决中让学生感受到其广泛应用,并在具体应用中增强学生的应用能力。因此,本节教学中需要选用大量的实际问题,通过列方程解决问题,并且在问题解决过程中,促进学生分析问题、解决问题意识和能力的提高以及抽象思维的初步形成。显然,这个任务并非某个教学活动所能达成的,而应在教学活动中创设大量的问题解决的情境,在具体情境中发展学生的有关能力。为此,本节课的教学目标是:
知识目标:
通过分析问题中的数量关系,抽象出方程解决问题,认识方程模型的重要性,并总结运用方程解决实际问题的一般过程。
能力目标:
1、经历分析,抽象和建模的过程,进一步体会方程是刻画现实世界中数量关系的一个有效的数学模型;
2、能够抽象出一元二次方程解决有关实际问题,能根据具体问题的实际意义检验结果的合理性,进一步培养学生分析问题、解决问题的意识和能力;
情感态度价值观:
在问题解决中,经历一定的合作交流活动,进一步发展学生合作交流的意识和能力。
三、学法指导
本课是学生学习完一元二次方程的解法后的应用课,虽然学生在七八年级已经进行了一定的训练,但本课对学生而言还是有一定的难度。本课采用启发式、问题串讨论式、合作学习相结合的方式,引导学生从已有的知识和生活经验出发,以教材提供的素材为基础,引导学生对对问题中的数量进行分析从而抽象出方程解决问题;学生之间的合作交流、互助学习,能更好地调动学生的学习积极性,更符合学生的认知规律。无论是例题的分析还是练习的分析,尽可能地鼓励学生动脑、动手、动口,为学生提供展示自己聪明才智的机会,并且在此过程中发现学生分析问题、解决问题的独到见解以及思维的误区,更好地进行学法指导。
四、教学过程分析
本课时分为以下五个教学环节:第一环节:回忆巩固,情境导入;第二环节:做一做,探索新知;第三环节:练一练,巩固新知;第四环节:收获与感悟;第五环节:布置作业。
第一环节;情境导入
活动内容:提出问题:还记得梯子下滑的问题吗?
在这个问题中,梯子顶端下滑1米时,梯子底端滑动的距离大于1米,那么梯子顶端下滑几米时,梯子底端滑动的距离和它相等呢?如果梯子长度是13米,梯子顶端下滑的距离与梯子底端滑动的距离可能相等吗?如果相等,那么这个距离是多少?
分组讨论:
怎么设未知数?在这个问题中存在怎样的等量关系?如何利用勾股定理抽象出方程?
活动目的:以学生所熟悉的梯子下滑问题为素材,以前面所学的勾股定理为切入点,用熟悉的情境激发学生解决问题的欲望,用学生已有的知识为支点抽象出一元二次方程使问题得以解决,进一步让学生体会数形结合的思想。
活动的实际效果:大部分学生能够联系以前学过的勾股定理的三边关系抽象出方程对上述问题进行思考,能够在老师的引导下主动地探究问题,取得了比较理想的效果,而且也调动了学生的学习热情,激发了学生的思维,为后面的探索奠定了良好的基础。
第二环节探索新知
活动内容:见课本P53页例1:
如图:某海军基地位于A处,在其正南方向200海里处有一重要目标B,在B的正东方向200海里处有一重要目标C,小岛D位于AC的中点,岛上有一补给码头。小岛F位于BC中点。一艘军舰从A出发,经B到C匀速巡航,一艘补给船同时从D出发,沿南偏西方向匀速直线航行,欲将一批物品送达军舰。
已知军舰的速度是补给船的2倍,军舰在由B到C的途中与补给船相遇,那么相遇时补给船航行了多少海里?(结果精确到0.1海里)
在教学中要给学生充分的时间去审清题意,分析各量之间的关系,不能粗线条解决。在讲解过程中可逐步分解难点:审清题意;找准各条有关线段的长度关系;通过抽象思维建立方程模型,之后求解。
实际应用问题比较抽象,因此教学中老师要给学生充分的时间去审清题意,让学生自己反复审题,弄清各量之间的关系,分析题目中的已知条件和要求解的问题,并在这个前提下抽象出图形中各条线段所表示的量,弄清它们之间的关系,从而抽象出方程模型解决问题。
在学生分析题意遇到困难时,教学中可设置问题串分解难点:
(1)要求DE的长,需要如何设未知数?
(2)怎样建立含DE未知数的等量关系?从已知条件中能找到吗?
(3)利用勾股定理建立等量关系,如何构造直角三角形?
(4)选定后,三条边长都是已知的吗?DE,DF,EF分别是多少?
学生在问题串的引导下,逐层分析,在分组讨论后抽象出题目中的等量关系即:
速度等量:V军舰=2×V补给船
时间等量:t军舰=t补给船
三边数量关系:
弄清图形中线段长表示的量:已知AB=BC=200海里,DE表示补给船的路程,AB+BE表示军舰的路程。
学生在此基础上选准未知数,用未知数表示出线段:DE、EF的长,根据勾股定理抽象出方程求解,并判断解的合理性。
巩固练习:1、一个直角三角形的斜边长为7cm,一条直角边比另一条直角边长1cm,那么这个直角三角的面积是多少?
文本框:8cm2、如图:在RtACB中,∠C=90°,点P、Q同时由A、B两点出发分别沿AC、BC方向向点C匀速移动,它们的速度都是1m/s,几秒后PCQ的面积为RtACB面积的一半?
3、在宽为20m,长为32m的矩形耕地上,修筑同样宽的三条道路(两条纵向,一条横向,横向与纵向互相垂直),把耕地分成大小相等的六块作试验田,要使试验田面积为570*方米,问道路应为多宽?
说明:三个题目的设计从简单问题入手,第一题通过勾股定理抽象出一元二次方程解决直角三角形边长问题;第2题构造了一个可变的直角三角形,抽象出方程解决面积问题;第三题也是面积问题,在这个问题中常设道路宽为x米,通过*移道路使六块田地变成一块田地,从而根据矩形面积公式抽象出方程解决问题。
活动目的:一元二次方程的应用题的类型较多,像数字问题、面积问题、*均增长(或降低)率问题、利润问题等;本节课以教材上的引例作为出发点,作为素材来呈现,可以将应用类型作适当的拓展,在练习中将教材中的应用问题归类呈现出来,便于学生理解和掌握。本课由数形结合问题拓展到面积问题,后面可以在练习中增加数字问题,为学生呈现更多的应用类型,让学生在不同的情境中体会数学抽象和建模的重要性。
活动实际效果:应用问题设置都经过精心准备。通过问题串的设立,将比较复杂、难以理解的题目分成多个小的题目去理解,使学生在不知不觉中克服困难,体会到通过抽象出方程解应用题的三个重要环节:整体系统的审清题意;寻找等量关系;正确求解并检验解的合理性。采取的是一讲一练,从巩固练习的准确程度上来看,学生掌握得比较好,能够达到预期的效果。
第三环节:练一练,巩固新知
活动内容:1、在一块正方形的钢板上裁下宽为20cm的一个长条,剩下的长方形钢板的面积为4800cm2。求原正方形钢板的面积。
2、有这样一道*古算题:有两笔钱,一多一少,其和等于20,积等于96,多的一笔钱被许诺赏给赛义德,那么赛义德得到多少钱?
3、《九章算术》“勾股”章有一题:甲、乙二人同时从同一地点出发,甲的速度为7,乙的速度为3。乙一直向东走,甲先向南走了10步,后又斜向北偏东方向走了一段后与乙相遇。那么相遇时,甲、乙各走了多远?
活动目的:通过三道问题的解决,查缺补漏,了解学生的掌握情况和灵活运用知识的程度。在教学过程中要以学生为主体,引导学生自主发现、合作交流。活动实际效果:学生在前面活动中积累的经验,可以帮助学生比较顺利地分析上述问题,遇有疑难可以让学生在合作交流中解决,学生在训练过程中更加理解数学抽象和建模的重要性.大部分学生能够独立解决问题。
第四环节:收获与感悟
活动内容:提问:
1、列方程解应用题的关键;2、列方程解应用题的步骤;3、列方程应注意的一些问题。
学生在学习小组中回顾与反思,并进行组间交流发言。
活动目的:鼓励学生回顾本节课知识方面有哪些收获,解题技能方面有哪些提高,还有什么疑难问题希望得到解决;通过对三个问题的解决,加深学生通过抽象思维抽象出方程解决实际问题的意识和能力;并且通过学生间的合作学习帮助不同层次的孩子解决实际困难,增强孩子学好数学的信心。
活动实际效果:学生通过回顾本节课的学习过程,体会利用抽象思维抽象出一元二次方程解决实际问题的方法和技巧,进一步提高自己解决问题的能力。
第五环节:布置作业
1、甲乙两个小朋友的年龄相差4岁,两个人的年龄相乘积等于45,你知道这两个小朋友几岁吗?
2、一块长方形草地的长和宽分别为20m和15m,在它四周外围环绕着宽度相等的小路,已知小路的面积为246,求小路的宽度。
3、一个两位数等于其数字之积的3倍,其十位数比个位数小2,求这两位数。
一元二次方程教学设计4
教学目标
知识技能:掌握应用方程解决实际问题的方法步骤,提高分析问题、解决问题的能力。
过程与方法:通过探索球积分表中数量关系的过程,进一步体会方程是解决实际问题的数学模型,并且明确用方程解决实际问题时,不仅要注意解方程的过程是否正确,还要检验方程的解是否符合问题的实际意义。
情感态度:鼓励学生自主探究,合作交流,养成自觉反思的良好习惯。
重点:把实际问题转化为数学问题,不仅会列方程求出问题的解,还会进行推理判断。
难点:把数学问题转化为数学问题。
关键:从积分表中找出等量关系。
教具:投影仪。
教法:探究、讨论、启发式教学。
教学过程
一、创设问题情境
用投影仪展示几张比赛场面及比分(学习是生活需要,引起学生兴趣)
二、引入课题
教师用投影仪展示课本106页中篮球联赛积分榜引导学生观察,思考:.
① 用式子表示总积分能与胜、负场数之间的数量关系;
②某队的胜场总分能等于它的负场总积分么?
学生充分思考、合作交流,然后教师引导学生分析。
师:要解决问题①必须求出胜一场积几分,负一场积几分,你能从积分榜中得到负一场积几分么?你选择哪一行最能说明负一场积几分?
生:从最下面一行可以发现,负一场积1分。
师:胜一场呢?
生:2分(有的用算术法、有的用方程各抒己见)
师:若一个队胜a场,负多少场,又怎样积分?
生:负(14-a)场,胜场积分2a,负场积分14-a,总积分a+14.
师:问题②如何解决?
学生通过计算各队胜、负总分得出结论:不等。
师:你能用方程说明上述结论么?
生:老师,没有等量关系。
师:欸,就是,已知里没说,是不是不能用方程解决了?谁又没有大胆设想?
生:老师,能不能试着让它们相等?
师:伟大的发明都是在尝试中进行的,试试?
生:如果设一个队胜了x场,则负(14-x)场,让胜场总积分等负场总积分,方程为:2x=14-x解得x=4/3(学生掌声鼓励)
师:x表示什么?可以是分数么?由此你的出什么结论?
生:x表示胜得场数,应该是一个整数,所以,x=4/3不符合实际意义,因此没有哪个队的胜场总积分等于负场总积分。
师:此问题说明,利用方程不仅求出具体数值,而且还可以推理判断,是否存在某种数量关系;还说明用方程解决实际问题时,不仅要注意方程解得是否正确,还要检验方程的解是否符合问题的实际意义。
拓展
如果删去积分榜的最后一行,你还能用式子表示总积分与胜、负场数之间的数量关系吗?
师:我们可以从积分榜中积分不相同的两行数据求的胜负一场各得几分,如:一、三行。
教师引导学生设未知数,列方程。学生试说。
生:设胜一场积x分,则前进队胜场积分10x,负场积分(24-10x)分,它负了4场,所以负一场积分为(24-10x)/4,同理从第三行得到负一场积分为(23-9x)/5,从而列方程为(24-10x)/4=(23-9x)/5。解得x=2,当x=2时,(24-10x)/4=1。仍然可得负一场积1分,胜一场积2分。
三、巩固练习
已知某山区的*均气温与该山的海拔高度的关系见表:
海拔高度(单位:m)
100
200
300
400
*均气温(单位:℃)
22
21.5
21
20.5
20
若某种植物适宜生长在18℃20℃(包括18℃20℃)的山区,请问该植物适宜种在海拔为多少米的山区?
学生分析题意,思考,在练习本上完成,然后同桌小议,代表发言,教师点拨。
四、课堂小结:
让几个学生谈自己的收获,再让一个学生全面总结。
五、布置作业:
课本108页8、9题。
六、教学反思
本节课主要是借球赛积分表问题传授数学知识的应用。在前面已经讨论过由实际问题抽象出一元一次方程模型和解一元一次方程的基础上,本节进一步以探究的形式讨论如何用一元一次方程解决实际问题。要探究的问题比前几节的问题复杂些,问题情境与实际情况更接近。本节的重点是建立实际问题的方程模型。通过探究活动,进一步体验一元一次方程与实际的密切联系,加强数学建模思想,培养运用一元一次方程分析和解决问题的能力。
由于本节问题的背景和表达都比较贴近实际,其中的有些数量关系比较隐蔽,所以在探究过程中正确建立方程是难点,教师要恰当的引导,让学生弄清问题背景,分析清楚有关数量关系,找出可作为方程依据的主要相等关系,但教师不要代替学生的思考。
一元二次方程教学设计5
一、素质教育目标
(一)知识教学点:使学生会用列一元二次方程的方法解决有关增长率问题.
(二)能力训练点:进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养学生用数学的意识.
二、教学重点、难点
1.教学重点:学会用列方程的方法解决有关增长率问题.
2.教学难点:有关增长率之间的数量关系.下列词语的异同;增长,增长了,增长到;扩大,扩大到,扩大了.
三、教学步骤
(一)明确目标.
(二)整体感知
(三)重点、难点的学习和目标完成过程
1.复习提问
(1)原产量+增产量=实际产量。
(2)单位时间增产量=原产量×增长率。
(3)实际产量=原产量×(1+增长率)。
2.例1 某钢铁厂去年一月份某种钢的产量为5000吨,三月份上升到7200吨,这两个月*均每月增长的百分率是多少?
分析:设*均每月的增长率为x
则2月份的产量是5000+5000x=5000(1+x)(吨)。
3月份的产量是
=5000(1+x)2(吨)
解:设*均每月的增长率为x,据题意得:
5000(1+x)2=7200
(1+x)2=1.44
1+x=±1.2.
x1=0.2,x2=-2.2(不合题意,舍去)
取x=0.2=20%
教师引导,点拨、板书,学生回答
注意以下几个问题:
(1)为计算简便、直接求得,可以直接设增长的百分率为x。
(2)认真审题,弄清基数,增长了,增长到等词语的关系。
(3)用直接开*方法做简单,不要将括号打开。
练习1.教材P.42中5
学生分析题意,板书,笔答,评价
练习2.若设每年*均增长的百分数为x,分别列出下面几个问题的方程。
(1)某工厂用二年时间把总产值增加到原来的b倍,求每年*均增长的百分率。
(1+x)2=b(把原来的总产值看作是1.)
(2)某工厂用两年时间把总产值由a万元增加到b万元,求每年*均增长的百分数。
(a(1+x)2=b)
(3)某工厂用两年时间把总产值增加了原来的b倍,求每年增长的百分数.
((1+x)2=b+1把原来的总产值看作是1.)
以上学生回答,教师点拨.引导学生总结下面的规律:
设某产量原来的产值是a,*均每次增长的百分率为x,则增长一次后的产值为a(1+x),增长两次后的产值为a(1+x)2 ……增长n次后的产值为S=a(1+x)n.
规律的得出,使学生对此类问题能居高临下,同时培养学生的探索精神和创造能力.
例2 某产品原来每件600元,由于连续两次降价,现价为384元,如果两个降价的百分数相同,求每次降价百分之几?
分析:设每次降价为x.
第一次降价后,每件为600-600x=600(1-x)(元)
第二次降价后,每件为600(1-x)-600(1-x)x
=600(1-x)2(元).
解:设每次降价为x,据题意得
600(1-x)2=384.
答:*均每次降价为20%
教师引导学生分析完毕,学生板书,笔答,评价,对比,总结。
引导学生对比“增长”、“下降”的区别.如果设*均每次增长或下降为x,则产值a经过两次增长或下降到b,可列式为a(1+x)2=b(或a(1-x)2=b)
(四)总结、扩展
1.善于将实际问题转化为数学问题,严格审题,弄清各数据相互关系,正确布列方程.培养学生用数学的意识以及渗透转化和方程的思想方法.
2.在解方程时,注意巧算;注意方程两根的取舍问题.
3.我们只学习一元一次方程,一元二次方程的解法,所以只求到两年的增长率.3年、4年……,n年,应该说按照规律我们可以列出方程,随着知识的增加,我们也将会解这些方程.
四、布置作业
教材P.42中A8
五、板书设计
12.6 一元二次方程应用(三)
1.数量关系:例1……例2……
(1)原产量+增产量=实际产量分析:……分析……
(2)单位时间增产量=原产量×增长率解……解……
(3)实际产量=原产量(1+增长率)
2.最后产值、基数、*均增长率、时间的基本关系:
M=m(1+x)n n为时间
M为最后产量,m为基数,x为*均增长率