欢迎来到专业的唐家秘书网平台! 工作总结 工作计划 心得体会 思想汇报 发言稿 申请书 述职报告 自查报告
当前位置:首页 > 专题范文 > 公文范文 > 正文

高三上册数学理科期末试题及答案

时间:2023-02-14 20:20:04 来源:网友投稿

高三的日子是苦的,有刚入高三时的迷茫和压抑,有成绩失意时的沉默不语,有晚上奋战到一两点的精神*双重压力,也有在清晨凛冽的寒风中上学的艰苦经历。在奋笔疾书中得到知识的快乐,也是一种在巨大压力下面是小编为大家整理的高三上册数学理科期末试题及答案,供大家参考。

高三上册数学理科期末试题及答案

  【导语】高三的日子是苦的,有刚入高三时的迷茫和压抑,有成绩失意时的沉默不语,有晚上奋战到一两点的精神*双重压力,也有在清晨凛冽的寒风中上学的艰苦经历。在奋笔疾书中得到知识的快乐,也是一种在巨大压力下显得茫然无助的痛苦。高三频道为你整理《高三上册数学理科期末试题及答案》希望对你有帮助!

  第Ⅰ卷选择题共50分

  一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中有且只有一项是符合题目要求的,把答案填在答题卡的相应位置。

  1.已知平面向量,,且,则实数的值为

  A.B.C.D.

  2.设集合,,若,则实数的值为

  A.B.C.D.

  3.已知直线平面,直线,则“”是“”的

  A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件

  4.定义:.若复数满足,则等于

  A.B.C.D.

  5.函数在处的切线方程是

  A.B.C.D.

  6.某程序框图如右图所示,现输入如下四个函数,

  则可以输出的函数是

  A.B.C.D.

  7.若函数的图象部分如图所示,

  则和的取值是

  A.B.

  C.D.

  8.若函数的零点与的零点之差的绝对值不超过,则可以是

  A.B.C.D.

  9.已知,若方程存在三个不等的实根,则的取值范围是

  A.B.C.D.

  10.已知集合,。若存在实数使得成立,称点为“£”点,则“£”点在平面区域内的个数是

  A.0B.1C.2D.无数个

  第二卷非选择题共100分

  二、填空题:本大题共5小题,每小题4分,共20分.把答案填在答题卡上.

  11.已知随机变量,若,则等于******.

  12.某几何体的三视图如下右图所示,则这个几何体的体积是******.

  13.已知抛物线的准线与双曲线相切,

  则双曲线的离心率******.

  14.在平面直角坐标系中,不等式组所表示的平面区域的面积是9,则实数的值为******.

  15.已知不等式,若对任意且,该不等式恒成立,则实

  数的取值范围是******.

  三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.

  16.本小题满分13分

  在等差数列中,,其前项和为,等比数列的各项均为正数,,公比为,且,.

  Ⅰ求与;

  Ⅱ证明:.

  17.本小题满分13分

  已知向量

  Ⅰ求的解析式;

  Ⅱ求由的图象、轴的正半轴及轴的正半轴三者围成图形的面积。

  18.本小题满分13分图一,平面四边形关于直线对称,,,.把沿折起如图二,使二面角的余弦值等于.

  对于图二,完成以下各小题:

  Ⅰ求两点间的距离;

  Ⅱ证明:平面;

  Ⅲ求直线与平面所成角的正弦值.

  19.本小题满分13分二十世纪50年代,日本熊本县水俣市的许多居民都患了运动失调、四肢麻木等症状,人们把它称为水俣病.经调查发现一家工厂排出的废水中含有*汞,使鱼类受到污染.人们长期食用含高浓度*汞的鱼类引起汞中毒.引起世人对食品安全的关注.《中华人民共和国环境保*》规定食品的汞含量不得超过1.00ppm.

  罗非鱼是体型较大,生命周期长的食肉鱼,其体内汞含量比其他鱼偏高.现从一批罗非鱼中随机地抽出15条作样本,经检测得各条鱼的汞含量的茎叶图以小数点前一位数字为茎,小数点后一位数字为叶如下:

  Ⅰ若某检查人员从这15条鱼中,随机地抽出3条,求恰有1条鱼汞含量超标的概率;

  Ⅱ以此15条鱼的样本数据来估计这批鱼的总体数据.若从这批数量很大的鱼中任选3条鱼,记ξ表示抽到的鱼汞含量超标的条数,求ξ的分布列及Eξ

  20.本小题满分14分

  已知焦点在轴上的椭圆过点,且离心率为,为椭圆的左顶点.

  1求椭圆的标准方程;

  2已知过点的直线与椭圆交于,两点.

  ①若直线垂直于轴,求的大小;

  ②若直线与轴不垂直,是否存在直线使得为等腰三角形?如果存在,求出直线的方程;如果不存在,请说明理由.

  21.本小题共14分

  已知是由满足下述条件的函数构成的集合:对任意,

  ①方程有实数根;②函数的导数满足.

  普通高中2012—2013学年第一学期三明一、二中联合考试

  高三数学理科答案

  三、解答题

  16.解:Ⅰ设的公差为,

  因为所以…………………………………………3分

  解得或舍,.

  故,.……………………………………6分

  Ⅱ因为,

  所以.……………………………………9分

  故

  …………………………………………………………………11分

  因为≥,所以≤,于是≤,

  所以≤.

  即≤……………………………………………13分

  17.解:Ⅰ…………2分

  ………………………………4分

  ………………………………6分

  ,

  ∴。……………………………………………………………………7分

  Ⅱ令=0,解得

  易知的图象与轴正半轴的第一个交点为。……………………9分

  所以的图象、轴的正半轴及x轴的正半轴三者围成图形的面积

  。……………………………………………………………11分

  ……………………………………………………………13分

  18.解:Ⅰ取的中点,连接,

  由,得:

  ∴就是二面角的平面角,即…………………2分

  在中,解得,又

  ,解得。…………………………………………4分

  Ⅱ由,

  ∴,∴,

  ∴,又,∴平面.……………8分

  Ⅲ方法一:由Ⅰ知平面,平面

  ∴平面平面,平面平面,

  就是与平面所成的角。……………………………………………11分

  ∴.……………………………………………13分

  方法二:设点到平面的距离为,

  ∵,,

  ∴,……………………………………………………………………………11分

  于是与平面所成角的正弦为.………………………13分

  方法三:以所在直线分别为轴,轴和轴建立空间直角坐标系,

  则.

  设平面的法向量为,则

  ,,,,

  取,则,………………………………………………………11分

  于是与平面所成角的正弦.………13分

  19.解:I记“15条鱼中任选3条恰好有1条鱼汞含量超标”为事件A

  则.

  ∴15条鱼中任选3条恰好有1条鱼汞含量超标的概率为………………5分

  II解法一:依题意可知,这批罗非鱼中汞含量超标的鱼的概率P=,……7分

  所有ξ的取值为0,1,2,3,其分布列如下:

  ξ0123

  Pξ

  ………11分

  所以ξ~,………………………………………12分

  所以Eξ=1.………………………………………………13分

  解法二:依题意可知,这批罗非鱼中汞含量超标的鱼的概率P=,……7分

  所有ξ的取值为0,1,2,3,其分布列如下:

  ξ0123

  Pξ

  ………11分

  所以Eξ=.……………………………………13分

  20.解:Ⅰ设椭圆的标准方程为,且.

  由题意可知:,.………………………………………2分

  解得.

  ∴椭圆的标准方程为.……………………………………3分

  Ⅱ由Ⅰ得.设.

  ⅰ当直线垂直于轴时,直线的方程为.

  由解得:或

  即不妨设点在轴上方.…………………5分

  则直线的斜率,直线的斜率.

  ∵,得.

  ∴.………………………………………6分

  ⅱ当直线与轴不垂直时,由题意可设直线的方程为.

  由消去得:.

  因为点在椭圆的内部,显然.

  ………………………………………8分

  因为,,,

  所以

  ∴.即为直角三角形.……………11分

  假设存在直线使得为等腰三角形,则.

  取的中点,连接,则.

  记点为.

  另一方面,点的横坐标,

  ∴点的纵坐标.

  又

  故与不垂直,矛盾.

  所以当直线与轴不垂直时,不存在直线使得为等腰三角形.

  ………………………………………13分

  21.解:Ⅰ因为①当时,,

  所以方程有实数根0;

  ②,

  所以,满足条件;

  由①②,函数是集合中的元素.…………5分

  Ⅱ假设方程存在两个实数根,,

  则,.

  不妨设,根据题意存在,

  满足.

  因为,,且,所以.

  与已知矛盾.又有实数根,

  所以方程有且只有一个实数根.…………10分

  Ⅲ当时,结论显然成立;……………………………………………11分[来源:学&科&网Z&X&X&K]

  当,不妨设.

  因为,且所以为增函数,那么.

  又因为,所以函数为减函数。

推荐访问:上册 理科 期末 高三上册数学理科期末试题及答案 高三上册数学理科期末试题及答案 高三数学期末考试卷理科 高三理科数学试卷及答案 高三数学理科试卷答案

猜你喜欢