欢迎来到专业的唐家秘书网平台! 工作总结 工作计划 心得体会 思想汇报 发言稿 申请书 述职报告 自查报告
当前位置:首页 > 专题范文 > 公文范文 > 正文

2023年高一年级数学必修五重点知识点

时间:2023-03-05 19:15:05 来源:网友投稿

高一新生要根据自己的条件,以及高中阶段学科知识交叉多、综合性强,以及考查的知识和思维触点广的特点,找寻一套行之有效的学习方法。今天为各位同学整理了《高一年级数学必修五重点知识点》下面是小编为大家整理的2023年高一年级数学必修五重点知识点,供大家参考。

2023年高一年级数学必修五重点知识点

  【导语】高一新生要根据自己的条件,以及高中阶段学科知识交叉多、综合性强,以及考查的知识和思维触点广的特点,找寻一套行之有效的学习方法。今天为各位同学整理了《高一年级数学必修五重点知识点》,希望对您的学习有所帮助!

  【篇一】

  一、集合有关概念

  1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素.

  2、集合的中元素的三个特性:

  1.元素的确定性;2.元素的互异性;3.元素的无序性

  说明:1对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素.

  2任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素.

  3集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样.

  4集合元素的三个特性使集合本身具有了确定性和整体性.

  3、集合的表示:如我校的篮球队员,太平洋,大西洋,印度洋,北冰洋

  1.用拉丁字母表示集合:A=我校的篮球队员,B=1,2,3,4,5

  2.集合的表示方法:列举法与描述法.

  注意啊:常用数集及其记法:

  非负整数集即自然数集记作:N

  正整数集N*或N+整数集Z有理数集Q实数集R

  关于属于的概念

  集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作aA,相反,a不属于集合A记作a?A

  列举法:把集合中的元素一一列举出来,然后用一个大括号括上.

  描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法.用确定的条件表示某些对象是否属于这个集合的方法.

  ①语言描述法:例:不是直角三角形的三角形

  ②数学式子描述法:例:不等式x-32的解集是x?R|x-32或x|x-32

  4、集合的分类:

  1.有限集含有有限个元素的集合

  2.无限集含有无限个元素的集合

  3.空集不含任何元素的集合例:x|x2=-5}

  二、集合间的基本关系

  1.包含关系子集

  注意:有两种可能1A是B的一部分,;2A与B是同一集合.

  反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA

  2.相等关系55,且55,则5=5

  实例:设A=x|x2-1=0B=-1,1元素相同

  结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B

  ①任何一个集合是它本身的子集.AA

  ②真子集:如果AB,且A1B那就说集合A是集合B的真子集,记作AB或BA

  ③如果AB,BC,那么AC

  ④如果AB同时BA那么A=B

  3.不含任何元素的集合叫做空集,记为

  规定:空集是任何集合的子集,空集是任何非空集合的真子集.

  三、集合的运算

  1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.

  记作AB读作A交B,即AB=x|xA,且xB.

  2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB读作A并B,即AB=x|xA,或xB.

  3、交集与并集的性质:AA=A,A=,AB=BA,AA=A,

  A=A,AB=BA.

  4、全集与补集

  1补集:设S是一个集合,A是S的一个子集即,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集或余集

  2全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集.通常用U来表示.

  3性质:⑴CUCUA=A⑵CUA⑶CUAA=U

  【篇二】

  立体几何初步

  柱、锥、台、球的结构特征

  棱柱

  定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

  分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

  表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱。

  几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

  棱锥

  定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。

  分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

  表示:用各顶点字母,如五棱锥

  几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

  棱台

  定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。

  分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

  表示:用各顶点字母,如五棱台

  几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

  圆柱

  定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。

  几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

  圆锥

  定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。

  几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

  圆台

  定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

  几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

  球体

  定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

  几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

  NO.2空间几何体的三视图

  定义三视图

  定义三视图:正视图光线从几何体的前面向后面正投影;侧视图从左向右、俯视图从上向下

  注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;

  俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;

  侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

  NO.3空间几何体的直观图——斜二测画法

  斜二测画法

  斜二测画法特点

  ①原来与x轴平行的线段仍然与x平行且长度不变;

  ②原来与y轴平行的线段仍然与y平行,长度为原来的一半。

  直线与方程

  直线的倾斜角

  定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°

  直线的斜率

  定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。

  过两点的直线的斜率公式:

  (注意下面四点)

  1当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;

  2k与P1、P2的顺序无关;

  3以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

  4求直线的倾斜角可由直线上两点的坐标先求斜率得到。

  幂函数

  定义

  形如y=x^aa为常数的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。

  定义域和值域

  当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域

  性质

  对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:

  首先我们知道如果a=p/q,q和p都是整数,则x^p/q=q次根号x的p次方,如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞。当指数n是负整数时,设a=-k,则x=1/x^k,显然x≠0,函数的定义域是-∞,0∪0,+∞.因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:

  排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;

  排除了为0这种可能,即对于x<0和x>0的所有实数,q不能是偶数;

  排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。

  指数函数

  指数函数

  1指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。

  2指数函数的值域为大于0的实数集合。

  3函数图形都是下凹的。

  4a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。

  5可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中当然不能等于0,函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。

  6函数总是在某一个方向上无限趋向于X轴,永不相交。

  7函数总是通过0,1这点。

  8显然指数函数无界。

  奇偶性

  定义

  一般地,对于函数fx

  1如果对于函数定义域内的任意一个x,都有f-x=-fx,那么函数fx就叫做奇函数。

  2如果对于函数定义域内的任意一个x,都有f-x=fx,那么函数fx就叫做偶函数。

  3如果对于函数定义域内的任意一个x,f-x=-fx与f-x=fx同时成立,那么函数fx既是奇函数又是偶函数,称为既奇又偶函数。

  4如果对于函数定义域内的任意一个x,f-x=-fx与f-x=fx都不能成立,那么函数fx既不是奇函数又不是偶函数,称为非奇非偶函数。

推荐访问:知识点 必修 重点 高一年级数学必修五重点知识点 高一年级数学必修五重点知识点 数学高一必修五知识点归纳 高中数学必修五知识点归纳 高二数学必修五知识点

猜你喜欢