初二教案数学教案6篇初二教案数学教案篇1[教学分析]勾股定理是揭示三角形三条边数量关系的一条非常重要的性质,也是几何中最重要的定理之一。它是解直角三角形的主要依据之一,同时在实际生下面是小编为大家整理的初二教案数学教案6篇,供大家参考。
教案在书写的过程中,大家需要注意联系实际,在平时的教学活动中,教案起到很关键的功用,以下是小编精心为您推荐的初二教案数学教案6篇,供大家参考。
初二教案数学教案篇1
[教学分析]
勾股定理是揭示三角形三条边数量关系的一条非常重要的性质,也是几何中最重要的定理之一。它是解直角三角形的主要依据之一,同时在实际生活中具有广泛的用途,“数学源于生活,又用于生活”正是这章书所体现的主要思想。教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际操作,使学生获得较为直观的印象;通过联系比较、探索、归纳,帮助学生理解勾股定理,以利于进行正确的应用。
本节教科书从毕达哥拉斯观察地面发现勾股定理的传说谈起,让学生通过观察计算一些以直角三角形两条直角边为边长的小正方形的面积与以斜边为边长的正方形的面积的关系,发现两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积,从而发现勾股定理,这时教科书以命题的形式呈现了勾股定理。关于勾股定理的证明方法有很多,教科书正文中介绍了我国古人赵爽的证法。之后,通过三个探究栏目,研究了勾股定理在解决实际问题和解决数学问题中的应用,使学生对勾股定理的作用有一定的认识。
[教学目标]
一、 知识与技能
1、探索直角三角形三边关系,掌握勾股定理,发展几何思维。
2、应用勾股定理解决简单的实际问题
3学会简单的合情推理与数学说理
二、 过程与方法
引入两段中西关于勾股定理的史料,激发同学们的兴趣,引发同学们的思考。通过动手操作探索与发现直角三角形三边关系,经历小组协作与讨论,进一步发展合作交流能力和数学表达能力,并感受勾股定理的应用知识。
三、 情感与态度目标
通过对勾股定理历史的了解,感受数学文化,激发学习兴趣;在探究活动中,学生亲自动手对勾股定理进行探索与验证,培养学生的合作交流意识和探索精神,以及自主学习的能力。
四、 重点与难点
1、探索和证明勾股定理
2熟练运用勾股定理
[教学过程]
一、创设情景,揭示课题
1、教师展示图片并介绍第一情景
以中国最早的一部数学著作——《周髀算经》的开头为引,介绍周公向商高请教数学知识时的对话,为勾股定理的出现埋下伏笔。
周公问:“窃闻乎大夫善数也,请问古者包牺立周天历度.夫天不可阶而升,地不可得尺寸而度,请问数安从出?”商高答:“数之法出于圆方,圆出于方,方出于矩,矩出九九八十一,故折矩以为勾广三,股修四,径隅五。既方其外,半之一矩,环而共盘.得成三、四、五,两矩共长二十有五,是谓积矩。故禹之所以治天下者,此数之所由生也。”
2、教师展示图片并介绍第二情景
毕达哥拉斯是古希腊著名的数学家。相传在2500年以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的某种特性。
二、师生协作,探究问题
1、现在请你也动手数一下格子,你能有什么发现吗?
2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有这样的特点呢?
3、你能得到什么结论吗?
三、得出命题
勾股定理:如果直角三角形的两直角边长分别为a、b,斜边长为c,那么,即直角三角形两直角边的平方和等于斜边的平方。解释: 由于我国古代把直角三角形中较短的直角边称为勾,较长的边称为股,斜边称为弦,所以,把它叫做勾股定理。
四、勾股定理的证明
赵爽弦图的证法
第一种方法:边长为 的正方形可以看作是由4个直角边分别为 、 ,斜边为 的直角三角形围在外面形成的。因为边长为 的正方形面积加上4个直角三角形的面积等于外围正方形的面积,所以可以列出等式 ,化简得 。
第二种方法:边长为 的正方形可以看作是由4个直角边分别为 、 ,斜边为 的
角三角形拼接形成的(虚线表示),不过中间缺出一个边长为 的正方形“小洞”。
因为边长为 的正方形面积等于4个直角三角形的面积加上正方形“小洞”的面积,所以可以列出等式 ,化简得 。
这种证明方法很简明,很直观,它表现了我国古代数学家赵爽高超的证题思想和对数学的钻研精神,是我们中华民族的骄傲。
五、应用举例,拓展训练,巩固反馈。
勾股定理的灵活运用勾股定理在实际的生产生活当中有着广泛的应用。勾股定理的发现和使用解决了许多生活中的问题,今天我们就来运用勾股定理解决一些问题,你可以吗?试一试。
例题:小明妈妈买了一部29英寸(74厘米)的电视机,小明量了电视机的屏幕后,发现屏幕只有58厘长和46厘米宽,他觉得一定是售货员搞错了,你同意他的想法吗?你能解释这是为什么吗?
六、归纳总结1、内容总结:探索直角三角形两直角边的平方和等于斜边的平方,利于勾股定理,解决实际问题
2、方法归纳:数方格看图找关系,利用面积不变的方法。用直角三角形三边表示正方形的面积观察归纳注意画一个直角三角形表示正方形面积,再次验证自己的发现。
七、讨论交流
让学生发表自己的意见,提出他们模糊不清的概念,给他们一个梳理知识的机会,通过提示性的引导,让学生对勾股定理的概念豁然开朗,为后面勾股定理的应用打下基础。
我们班的同学很聪明。大家很快就通过数格子发现了勾股定理的规律。还有什么地方不懂的吗?跟大家一起来交流一下。请同学们课后在反思天地中都发表一下自己的学习心得。
初二教案数学教案篇2
教学目标
1、理解用配方法解一元二次方程的基本步骤。
2、会用配方法解二次项系数为1的一元二次方程。
3、进一步体会化归的思想方法。
重点难点
重点:会用配方法解一元二次方程.
难点:使一元二次方程中含未知数的项在一个完全平方式里。
教学过程
(一)复习引入
1、用配方法解方程x2+x-1=0,学生练习后再完成课本p.13的“做一做”.
2、用配方法解二次项系数为1的一元二次方程的基本步骤是什么?
(二)创设情境
现在我们已经会用配方法解二次项系数为1的一元二次方程,而对于二次项系数不为1的一元二次方程能不能用配方法解?
怎样解这类方程:2x2-4x-6=0
(三)探究新知
让学生议一议解方程2x2-4x-6=0的方法,然后总结得出:对于二次项系数不为1的一元二次方程,可将方程两边同除以二次项的系数,把二次项系数化为1,然后按上一节课所学的方法来解。让学生进一步体会化归的思想。
(四)讲解例题
1、展示课本p.14例8,按课本方式讲解。
2、引导学生完成课本p.14例9的填空。
3、归纳用配方法解一元二次方程的基本步骤:首先将方程化为二次项系数是1的一般形式;其次加上一次项系数的一半的平方,再减去这个数,使得含未知数的项在一个完全平方式里;最后将配方后的一元二次方程用因式分解法或直接开平方法来解。
(五)应用新知
课本p.15,练习。
(六)课堂小结
1、用配方法解一元二次方程的基本步骤是什么?
2、配方法是一种重要的数学方法,它的重要性不仅仅表现在一元二次方程的解法中,在今后学习二次函数,高中学习二次曲线时都要经常用到。
3、配方法是解一元二次方程的通法,但是由于配方的过程要进行较繁琐的运算,在解一元二次方程时,实际运用较少。
4、按图1—l的框图小结前面所学解
一元二次方程的算法。
(七)思考与拓展
不解方程,只通过配方判定下列方程解的
情况。
(1)4x2+4x+1=0;(2)x2-2x-5=0;
(3)–x2+2x-5=0;
[解]把各方程分别配方得
(1)(x+)2=0;
(2)(x-1)2=6;
(3)(x-1)2=-4
由此可得方程(1)有两个相等的实数根,方程(2)有两个不相等的实数根,方程(3)没有实数根。
点评:通过解答这三个问题,使学生能灵活运用“配方法”,并强化学生对一元二次方程解的三种情况的认识。
初二教案数学教案篇3
教学目标:
1、 经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。
2、 探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。
重点难点:
重点:了解勾股定理的由来,并能用它来解决一些简单的问题。
难点:勾股定理的发现
教学过程
一、 创设问题的情境,激发学生的学习热情,导入课题
出示投影1 (章前的图文 p1)教师道白:介绍我国古代在勾股定理研究方面的贡献,并结合课本p5谈一谈,讲述我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。
出示投影2 (书中的p2 图1—2)并回答:
1、 观察图1-2,正方形a中有_______个小方格,即a的面积为______个单位。
正方形b中有_______个小方格,即a的面积为______个单位。
正方形c中有_______个小方格,即a的面积为______个单位。
2、 你是怎样得出上面的结果的?在学生交流回答的基础上教师直接发问:
3、 图1—2中,a,b,c 之间的面积之间有什么关系?
学生交流后形成共识,教师板书,a+b=c,接着提出图1—1中的a.b,c 的关系呢?
二、 做一做
出示投影3(书中p3图1—4)提问:
1、图1—3中,a,b,c 之间有什么关系?
2、图1—4中,a,b,c 之间有什么关系?
3、 从图1—1,1—2,1—3,1|—4中你发现什么?
学生讨论、交流形成共识后,教师总结:
以三角形两直角边为边的正方形的面积和,等于以斜边的正方形面积。
三、 议一议
1、 图1—1、1—2、1—3、1—4中,你能用三角形的边长表示正方形的面积吗?
2、 你能发现直角三角形三边长度之间的关系吗?
在同学的交流基础上,老师板书:
直角三角形边的两直角边的平方和等于斜边的平方。这就是的“勾股定理”
也就是说:如果直角三角形的两直角边为a,b,斜边为c
那么
我国古代称直角三角形的较短的直角边为勾,较长的为股,斜边为弦,这就是勾股定理的由来。
3、 分别以5厘米和12厘米为直角边做出一个直角三角形,并测量斜边的长度(学生测量后回答斜边长为13)请大家想一想(2)中的规律,对这个三角形仍然成立吗?(回答是肯定的:成立)
四、 想一想
这里的29英寸(74厘米)的电视机,指的是屏幕的长吗?只的是屏幕的款吗?那他指什么呢?
五、 巩固练习
1、 错例辨析:
△abc的两边为3和4,求第三边
解:由于三角形的两边为3、4
所以它的第三边的c应满足 =25
即:c=5
辨析:(1)要用勾股定理解题,首先应具备直角三角形这个必不可少的条件,可本题
△ abc并未说明它是否是直角三角形,所以用勾股定理就没有依据。
(2)若告诉△abc是直角三角形,第三边c也不一定是满足 ,题目中并为交待c 是斜边
综上所述这个题目条件不足,第三边无法求得。
2、 练习p7 §1.1 1
六、 作业
课本p7 §1.1 2、3、4
初二教案数学教案篇4
一、教材分析:勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形中的计算问题,是解直角三角形的主要根据之一,在实际生活中用途很大。
教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析、拼图等活动,使学生获得较为直观的印象;通过联系和比较,理解勾股定理,以利于正确的进行运用。
据此,制定教学目标如下:1、理解并掌握勾股定理及其证明。2、能够灵活地运用勾股定理及其计算。3、培养学生观察、比较、分析、推理的能力。4、通过介绍中国古代勾股方面的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感和钻研精神。
二、教学重点:勾股定理的证明和应用。
三、教学难点:勾股定理的证明。
四、教法和学法: 教法和学法是体现在整个教学过程中的,本课的教法和学法体现如下特点:以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学生学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程。
切实体现学生的主体地位,让学生通过观察、分析、讨论、操作、归纳,理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。
通过演示实物,引导学生观察、操作、分析、证明,使学生得到获得新知的成功感受,从而激发学生钻研新知的欲望。
五、教学程序:本节内容的教学主要体现在学生动手、动脑方面,根据学生的认知规律和学习心理,教学程序设计如下:
(一)创设情境以古引新
1、由故事引入,3000多年前有个叫商高的人对周公说,把一根直尺折成直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦等于5。这样引起学生学习兴趣,激发学生求知欲。
2、是不是所有的直角三角形都有这个性质呢?教师要善于激疑,使学生进入乐学状态。
3、板书课题,出示学习目标。(二)初步感知理解教材
教师指导学生自学教材,通过自学感悟理解新知,体现了学生的自主学习意识,锻炼学生主动探究知识,养成良好的自学习惯。
(三)质疑解难讨论归纳:1、教师设疑或学生提疑。如:怎样证明勾股定理?学生通过自学,中等以上的学生基本掌握,这时能激发学生的表现欲。2、教师引导学生按照要求进行拼图,观察并分析;(1)这两个图形有什么特点?(2)你能写出这两个图形的面积吗?
(3)如何运用勾股定理?是否还有其他形式?
这时教师组织学生分组讨论,调动全体学生的积极性,达到人人参与的效果,接着全班交流。先有某一组代表发言,说明本组对问题的理解程度,其他各组作评价和补充。教师及时进行富有启发性的点拨,最后,师生共同归纳,形成一致意见,最终解决疑难。
(四)巩固练习强化提高
1、出示练习,学生分组解答,并由学生总结解题规律。课堂教学中动静结合,以免引起学生的疲劳。
2、出示例1学生试解,师生共同评价,以加深对例题的理解与运用。针对例题再次出现巩固练习,进一步提高学生运用知识的能力,对练习中出现的情况可采取互评、互议的形式,在互评互议中出现的具有代表性的问题,教师可以采取全班讨论的形式予以解决,以此突出教学重点。
(五)归纳总结练习反馈
引导学生对知识要点进行总结,梳理学习思路。分发自我反馈练习,学生独立完成。
本课意在创设愉悦和谐的乐学气氛,优化教学手段,借助多媒体提高课堂教学效率,建立平等、民主、和谐的师生关系。加强师生间的合作,营造一种学生敢想、感说、感问的课堂气氛,让全体学生都能生动活泼、积极主动地教学活动,在学习中创新精神和实践能力得到培养。
初二教案数学教案篇5
教学目标
1.知识与技能
能应用所学的函数知识解决现实生活中的问题,会建构函数“模型”.
2.过程与方法
经历探索一次函数的应用问题,发展抽象思维.
3.情感、态度与价值观
培养变量与对应的思想,形成良好的函数观点,体会一次函数的应用价值.
重、难点与关键
1.重点:一次函数的应用.
2.难点:一次函数的应用.
3.关键:从数形结合分析思路入手,提升应用思维.
教学方法
采用“讲练结合”的教学方法,让学生逐步地熟悉一次函数的应用.
教学过程
一、范例点击,应用所学
?例5】小芳以200米/分的速度起跑后,先匀加速跑5分,每分提高速度20米/分,又匀速跑10分,试写出这段时间里她的跑步速度y(单位:米/分)随跑步时间x(单位:分)变化的函数关系式,并画出函数图象.
y=
?例6】a城有肥料200吨,b城有肥料300吨,现要把这些肥料全部运往c、d两乡.从a城往c、d两乡运肥料的费用分别为每吨20元和25元;从b城往c、d两乡运肥料的费用分别为每吨15元和24元,现c乡需要肥料240吨,d乡需要肥料260吨,怎样调运总运费最少?
解:设总运费为y元,a城往运c乡的肥料量为x吨,则运往d乡的肥料量为(200-x)吨.b城运往c、d乡的肥料量分别为(240-x)吨与(60+x)吨.y与x的关系式为:y=20x+25(200-x)+15(240-x)+24(60+x),即y=4x+10040(0≤x≤200).
由图象可看出:当x=0时,y有最小值10040,因此,从a城运往c乡0吨,运往d乡200吨;从b城运往c乡240吨,运往d乡60吨,此时总运费最少,总运费最小值为10040元.
拓展:若a城有肥料300吨,b城有肥料200吨,其他条件不变,又应怎样调运?
二、随堂练习,巩固深化
课本p119练习.
三、课堂总结,发展潜能
由学生自我评价本节课的表现.
四、布置作业,专题突破
课本p120习题14.2第9,10,11题.
板书设计
14.2.2一次函数(4)
1、一次函数的应用例:
初二教案数学教案篇6
教学建议
知识结构:
重点难点分析:
是商的二次根式的性质及利用性质进行二次根式的化简与运算,利用分母有理化化简.商的算术平方根的性质是本节的主线,学生掌握性质在二次根使得化简和运算的运用是关键,从化简与运算由引出初中重要的内容之一分母有理化,分母有理化的理解决定了最简二次根式化简的掌握.
教学难点是二次根式的除法与商的算术平方根的关系及应用.二次根式的除法与乘法既有联系又有区别,强调根式除法结果的一般形式,避免分母上含有根号.由于分母有理化难度和复杂性大,要让学生首先理解分母有理化的意义及计算结果形式.
教法建议:
1. 本节内容是在有积的二次根式性质的基础后学习,因此可以采取学生自主探索学习的模式,通过前一节的复习,让学生通过具体实例再结合积的性质,对比、归纳得到商的二次根式的性质.教师在此过程中给与适当的指导,提出问题让学生有一定的探索方向.
2. 本节内容可以分为三课时,第一课时讨论商的算术平方根的性质,并运用这一性质化简较简单的二次根式(被开方数的分母可以开得尽方的二次根式);第二课时讨论二次根式的除法法则,并运用这一法则进行简单的二次根式的除法运算以及二次根式的乘除混合运算,这一课时运算结果不包括根号出现内出现分式或分数的情况;第三课时讨论分母有理化的概念及方法,并进行二次根式的乘除法运算,把运算结果分母有理化.这样安排使内容由浅入深,各部分相互联系,因此及彼,层层展开.
3. 引导学生思考想一想中的内容,培养学生思维的深刻性,教师组织学生思考、讨论过程中,鼓励学生大胆猜想,积极探索,运用类比、归纳和从特殊到一般的思考方法激发学生创造性的思维.
教学设计示例
一、教学目标
1.掌握商的算术平方根的性质,能利用性质进行二次根式的化简与运算;
2.会进行简单的二次根式的除法运算;
3.使学生掌握分母有理化概念,并能利用分母有理化解决二次根式的化简及近似计算问题;
4. 培养学生利用二次根式的除法公式进行化简与计算的能力;
5. 通过二次根式公式的引入过程,渗透从特殊到一般的归纳方法,提高学生的归纳总结能力;
6. 通过分母有理化的教学,渗透数学的简洁性.
二、教学重点和难点
1.重点:会利用商的算术平方根的性质进行二次根式的化简,会进行简单的二次根式的除法运算,还要使学生掌握二次根式的除法采用分母有理化的方法进行.
2.难点:二次根式的除法与商的算术平方根的关系及应用.
三、教学方法
从特殊到一般总结归纳的方法以及类比的方法,在学习了二次根式乘法的基础上本小节
内容可引导学生自学,进行总结对比.
四、教学手段
利用投影仪.
五、教学过程
(一) 引入新课
学生回忆及得算数平方根和性质: (a0,b0)是用什么样的方法引出的?(上述积的算术平方根的性质是由具体例子引出的.)
学生观察下面的例子,并计算:
由学生总结上面两个式的关系得:
类似地,每个同学再举一个例子,然后由这些特殊的例子,得出:
(二)新课
商的算术平方根.
一般地,有 (a0,b0)
商的算术平方根等于被除式的算术平方根除以除式的算术平方根.
让学生讨论这个式子成立的条件是什么?a0,b0,对于为什么b0,要使学生通过讨论明确,因为b=0时分母为0,没有意义.
引导学生从运算顺序看,等号左边是将非负数a除以正数b求商,再开方求商的算术平方根,等号右边是先分别求被除数、除数的算术平方根,然后再求两个算术平方根的商,根据商的算术平方根的性质可以进行简单的二次根式的化简与运算.
例1 化简:
(1) ; (2) ; (3) ;
解∶(1)
(2)
(3)
说明:如果被开方数是带分数,在运算时,一般先化成假分数;本节根号下的字母均为正数.
例2 化简:
(1) ; (2) ;
解:(1)
(2)
让学生观察例题中分母的特点,然后提出, 的问题怎样解决?
再总结:这一小节开始讲的二次根式的化简,只限于所得结果的式子中分母可以完全开的尽方的情况, 的问题,我们将在今后的学习中解决.
学生讨论本节课所学内容,并进行小结.
(三)小结
1.商的算术平方根的性质.(注意公式成立的条件)
2.会利用商的算术平方根的性质进行简单的二次根式的化简.
(四)练习
1.化简:
(1) ; (2) ; (3) .
2.化简:
(1) ; (2) ; (3)
六、作业
教材p.183习题11.3;a组1.
七、板书设计
推荐访问:初二教案数学教案6篇 教案 数学教案