欢迎来到专业的唐家秘书网平台! 工作总结 工作计划 心得体会 思想汇报 发言稿 申请书 述职报告 自查报告
当前位置:首页 > 专题范文 > 教案设计 > 正文

2023年度七年级数学下册教案(精选文档)

时间:2023-02-03 15:25:03 来源:网友投稿

下面是小编为大家整理的2023年度七年级数学下册教案(精选文档),供大家参考。

2023年度七年级数学下册教案(精选文档)

作为一位杰出的教职工,总不可避免地需要编写教案,教案有助于顺利而有效地开展教学活动。教案应该怎么写才好呢?以下是人见人爱的小编分享的5篇《七年级数学下册教案》,希望能够满足亲的需求。

七年级数学下册教案 篇一

教材分析:

平行线的性质是空间与图形领域的基础知识,在以后的学习中经常要用到。这部分内容是后续学习的基础,它们不但为三角形内角和定理的证明提供了转化的方法,而且也为今后三角形全等、三角形相似等知识的学习奠定了理论基础,学好这部分内容至关重要

教学目标:

知识技能:

1、掌握平行线的三个性质

2、会用平行线的性质进行有关的简单推理和计算

3、通过对比,理解平行线的性质和判定的区别

过程与方法:

在探索图形的过程中,通过观察、操作、推理等手段,有条理地思考和表达自己的探索过程和结果,从而进一步增强分析、概括、表达能力

情感、态度与价值观:

学生在活动中体验探索、交流、成功与提升的喜悦,激发学生学习数学的兴趣,培养学生勇于实践,大胆猜想、推理的科学态度

教学重点:平行线的三个性质的探索

教学难点:平行线的性质和判定的区别以及应用它们进行简单的推理

教学过程:

1、创设情境:

(1)、回顾直线平行的条件。(学生回答后,教师板书。)

(2)、设问:根据同位角相等可以判定两条直线平行,反过来,如果两条直线平行,同位角之间有什么关系呢?内错角、同旁内角之间又有什么关系呢?

[设计意图]:通过复习回忆平行线的判定来引入新课,主要目的有两个,一是温故而知新,促使学生实现知识思维的正迁移;二是有利于学生在学习过程中去比较性质与判定的不同。同时,开门见山较直接地提出了本节课的目标,让学生明确本节课的学习任务,有利于实现学生对学习过程的自我监控。

2、探究新知:

(1)、画平行线:

教师通过多媒体演示。

学生用方格或笔记本上的横线。

[设计意图]:画平行线的这个过程主要让学生明白确定平行线性质的前提是要两条平行线,帮助学生区分平行线的性质与判定。

(2)、问题1:如何得到同位角? a

学生独立思考后回答:如可随意画 2 b

条直线与两条平行线相交,如图1,∠1 c

和∠2是同位角。 图1

[设计意图]:让学生体验得到同位角的过程,特别要让学生明白所得的同位角是任意的而不是特殊角、特殊位置的。

问题2:你准备怎样去找∠1和∠2的关系?

学生分组合作交流,进行探究后发表见解。

学生回答:如测量或剪下其中某一个角把它贴到另一个同位角的位置上去观察等。

[设计意图]:让学生明确探究的具体环节与步骤,形成整个班级内的合作与交流,让部分学习有困难的学生也能探究出结论。

七年级下册数学教案 篇二

平行线的判定(1)

课型:新课: 备课人:韩贺敏 审核人:霍红超

学习目标

1、经历观察、操作、想像、推理、交流等活动,进一步发展推理能力和有条理表达能力。

2、掌握直线平行的条件,领悟归纳和转化的数学思想

学习重难点:探索并掌握直线平行的条件是本课的重点也是难点。

一、探索直线平行的条件

平行线的判定方法1:

二、练一练1、判断题

1、两条直线被第三条直线所截,如果同位角相等,那么内错角也相等。( )

2、两条直线被第三条直线所截,如果内错角互补,那么同旁内角相等。( )

2、填空1.如图1,如果∠3=∠7,或______,那么______,理由是__________;如果∠5=∠3,或笔________,那么________, 理由是______________; 如果∠2+ ∠5= ______ 或者_______,那么a∥b,理由是__________.

(2)

(3)

2、如图2,若∠2=∠6,则______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.

三、选择题

1、如图3所示,下列条件中,不能判定AB∥CD的是( )

A.AB∥EF,CD∥EF B.∠5=∠A; C.∠ABC+∠BCD=180° D.∠2=∠3

2、右图,由图和已知条件,下列判断中正确的是( )

A.由∠1=∠6,得AB∥FG;

B.由∠1+∠2=∠6+∠7,得CE∥EI

C.由∠1+∠2+∠3+∠5=180°,得CE∥FI;

D.由∠5=∠4,得AB∥FG

四、已知直线a、b被直线c所截,且∠1+∠2=180°,试判断直线a、b的位置关系,并说明理由。

五、作业课本15页-16页练习的1、2、3、

5.2.2平行线的判定(2)

课型:新课: 备课人:韩贺敏 审核人:霍红超

学习目标

1、经历观察、操作、想像、推理、交流等活动,进一步发展空

间观念,推理能力和有条理表达能力。

毛2.分析题意说理过程,能灵活地选用直线平行的方法进行说理。

学习重点:直线平行的条件的应用。

学习难点:选取适当判定直线平行的方法进行说理是重点也是难点。

一、学习过程

平行线的判定方法有几种?分别是什么?

二.巩固练习:

1、如图2,若∠2=∠6,则______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.

(第1题) (第2题)

2、如图,一个合格的变形管道ABCD需要AB边与CD边平行,若一个拐角∠ABC=72°,则另一个拐角∠BCD=_______时,这个管道符合要求。

二、选择题。

1、如图,下列判断不正确的是( )

A.因为∠1=∠4,所以DE∥AB

B.因为∠2=∠3,所以AB∥EC

C.因为∠5=∠A,所以AB∥DE

D.因为∠ADE+∠BED=180°,所以AD∥BE

2、如图,直线AB、CD被直线EF所截,使∠1=∠2≠90°,则( )

A.∠2=∠4 B.∠1=∠4 C.∠2=∠3 D.∠3=∠4

三、解答题。

1、你能用一张不规则的纸(比如,如图1所示的四边形的纸)折出两条平行的直线吗?与同伴说说你的折法。

2、已知,如图2,点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?试用两种方法说明理由。

七年级下册数学教案 篇三

一、学习目标

1.使学生了解运用公式法分解因式的意义;

2.使学生掌握用平方差公式分解因式

二、重点难点

重点:掌握运用平方差公式分解因式。

难点:将单项式化为平方形式,再用平方差公式分解因式。

学习方法:归纳、概括、总结

三、合作学习

创设问题情境,引入新课

在前两学时中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式。

如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本学时我们就来学习另外的一种因式分解的方法——公式法。

1.请看乘法公式

左边是整式乘法,右边是一个多项式,把这个等式反过来就是左边是一个多项式,右边是整式的乘积。大家判断一下,第二个式子从左边到右边是否是因式分解?

利用平方差公式进行的因式分解,第(2)个等式可以看作是因式分解中的平方差公式。

a2—b2=(a+b)(a—b)

2.公式讲解

如x2—16

=(x)2—42

=(x+4)(x—4)。

9m2—4n2

=(3m)2—(2n)2

=(3m+2n)(3m—2n)。

四、精讲精练

例1、把下列各式分解因式:

(1)25—16x2;(2)9a2—b2。

例2、把下列各式分解因式:

(1)9(m+n)2—(m—n)2;(2)2x3—8x。

补充例题:判断下列分解因式是否正确。

(1)(a+b)2—c2=a2+2ab+b2—c2。

(2)a4—1=(a2)2—1=(a2+1)?(a2—1)。

五、课堂练习

教科书练习。

六、作业

1、教科书习题。

2、分解因式:x4—16x3—4x4x2—(y—z)2。

3、若x2—y2=30,x—y=—5求x+y。

七年级下册数学教案 篇四

一、教材分析

1、特点与地位:重点中的重点。

本课是教材求两结点之间的最短路径问题是图最常见的应用的之一,在交通运输、通讯网络等方面具有一定的实用意义。

2、重点与难点:结合学生现有抽象思维能力水平,已掌握基本概念等学情,以及求解最短路径问题的自身特点,确立本课的重点和难点如下:

(1)重点:如何将现实问题抽象成求解最短路径问题,以及该问题的解决方案。

(2)难点:求解最短路径算法的程序实现。

3、教学安排:最短路径问题包含两种情况:一种是求从某个源点到其他各结点的最短路径,另一种是求每一对结点之间的最短路径。根据教学大纲安排,重点讲解第一种情况问题的解决。安排一个课时讲授。教材直接分析算法,考虑实际应用需要,补充旅游景点线路选择的实例,实例中问题解决与算法分析相结合,逐步推动教学过程。

二、教学目标分析

1、知识目标:掌握最短路径概念、能够求解最短路径。

2、能力目标:

(1)通过将旅游景点线路选择问题抽象成求最短路径问题,培养学生的数据抽象能力。

(2)通过旅游景点线路选择问题的解决,培养学生的独立思考、分析问题、解决问题的能力。

3、素质目标:培养学生讲究工作方法、与他人合作,提高效率。

三、教法分析

课前充分准备,研读教材,查阅相关资料,制作多媒体课件。教学过程中除了使用传统的“讲授法”以 m.haozuowen.net 外,主要采用“案例教学法”,同时辅以多媒体课件,以启发的方式展开教学。由于本节课的内容属于图这一章的难点,考虑学生的接受能力,注意与学生沟通,根据学生的反应控制好教学进度是本节课成功的关键。

四、学法指导

1、课前上次课结课时给学生布置任务,使其有针对性的预习。

2、课中指导学生讨论任务解决方法,引导学生分析本节课知识点。

3、课后给学生布置同类型任务,加强练习。

五、教学过程分析

(一)课前复习(3~5分钟)回顾“路径”的概念,为引出“最短路径”做铺垫。

教学方法及注意事项:

(1)采用提问方式,注意及时小结,提问的目的是帮助学生回忆概念。

(2)提示学生“温故而知新”,养成良好的学习习惯。

(二)导入新课(3~5分钟)以城市公路网为例,基于求两个点间最短距离的实际需要,引出本课教学内容“求最短路径问题”。教学方法及注意事项:

(1)先讲实例,再指出概念,既可以吸引学生注意力,激发学习兴趣,又可以实现教学内容的自然过渡。

(2)此处使用案例教学法,不在于问题的求解过程,只是为了说明问题的存在,所以这里的例子只需要概述,能够说明问题即可。

(三)讲授新课(25~30分钟)

1、求某一结点到其他各结点的最短路径(重点)主要采用案例教学法,提出旅游景点选择的例子,解决如何选择代价小、景点多的路线。

(1)将实际问题抽象成图中求任一结点到其他结点最短路径问题。(3~5分钟)教学方法及注意事项:

①主要采用讲授法,将实际问题用图形表示出来。语言描述转换的方法(用圆圈加标号表示某一景点,用箭头表示从某景点到其他景点是否存在旅游线路,并且将旅途费用写在箭头的旁边。)一边用语言描述,一边在黑上画图。

②注意示范画图只进行一部分,让学生独立思考、自主完成余下部分的转化。

③及时总结,原型抽象(景点作为图的结点,景点间的线路作为图的边,旅途费用作为边的权值),将案例求解问题抽象成求图中某一结点到其他各结点的最短路径问题。

④利用多媒体课件,向学生展示一张带权有向图,并略作解释,为后续教学做准备。

教学方法及注意事项:

①启发式教学,如何实现按路径长度递增产生最短路径?

②结合案例分析求解最短路径过程中(重点)注意此处借助黑板,按照算法思想的步骤。同样,也是只示范一部分,余下部分由学生独立思考完成。

(四)课堂小结(3~5分钟)

1、明确本节课重点

2、提示学生,这种方式形成的图又可以解决哪类实际问题呢?

(五)布置作业

1、书面作业:复习本次课内容,准备一道备用习题,灵活把握时间安排。

六、教学特色

以旅游路线选择为主线,灵活采用案例教学、示范教学、多媒体课件等多种手段辅助教学,使枯燥的理论讲解生动起来。在顺利开展教学的`同时,体现所讲内容的实用性,提高学生的学习兴趣。

七年级数学下册教案 篇五

复习巩固解下列不等式:

①5x+54<x-1②2(1一3x)3x+20

③2(一3+x)<3(x+2)

④(x+5)3(x-5)-6

先让学生板演、练习,然后师生共同点评、订正,指出解题中应注意的地方,复习一元一次不等式的解法.让学生在解题过程中有目的地思考,既可巩固已学内容,又为下面的新课做好铺垫。

提出问题20xx年北京空气质量良好(二级以上)的天数与全年天数之比达到55%.若到20xx年这样的比值要超过70%,那么,20xx年北京空气质量良好(二级以上)的天数至少要增加多少天?选择学生感兴趣的问题,可以激发学习热情,此题既承上启下,又能增强学生的应用意识。

解决问题1、20xx年北京空气质量良好的天数是多少?

2、用x表示20xx年增加的空气质量良好的天数,则20xx年北京空气质量良好的天数是多少?

3、20xx年共有多少天?与x有关的哪个式子的值应超过70%?这个式子表示什么?

4、怎样解不等式在学生讨论后,教师做解题过程示范.

5、比较解这个不等式与解方程的步骤,两者有什么不同吗?

在学生充分讨论的基础上,师生共同归纳得出:

解一元一次不等式与解一元一次方程类似,只是不等式两边同乘以(或除以)一个数时,要注意不等号的方向.解一元一次方程,要根据等式的性质,将方程逐步化为x-a的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为xa或xa)的形式.一连串的问题引发学生阵阵思考。

展示整个解题过程,有利于学生发现解一元一次不等式与

解一元一次方程的关系,初步感知实际问题对不等式解集的影响.

让学生自己讨论总结,即可渗透类比思想,又能掌握注意点.

巩固新知1、解下列不等式,并在数轴上表示解集:

(1)(2)2、.当x或y满足什么条件时,下列关系成立?

(1)2(x+1)大于或等于1;

(2)4x与7的和不小于6;

(3)y与1的差不大于2y与3的差;

(4)3y与7的和的小于-2.学会举一反三,巩固已学知识。a)的形式.一连串的问题引发学生阵阵思考。展示整个解题过程,有利于学生发现解一元一次不等式与解一元一次方程的关系,初步感知实际问题对不等式解集的影响.让学生自己讨论总结,即可渗透类比思想,又能掌握注意点.巩固新知1、解下列不等式,并在数轴上表示解集:(1)(2)2、.当x或y满足什么条件时,下列关系成立?(1)2(x+1)大于或等于1;(2)4x与7的和不小于6;(3)y与1的差不大于2y与3的差;(4)3y与7的和的小于-2.学会举一反三,巩固已学知识

以上内容就是小编为您提供的5篇《七年级数学下册教案》,希望可以对您的写作有一定的参考作用。